Skip to main content

The 2D Analytic Signal on RF and B-Mode Ultrasound Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

The fundamental property of the analytic signal is the split of identity, meaning the separation of quantitative and qualitative information in form of the local phase and the local amplitude, respectively. Especially the structural representation, independent of brightness and contrast, of the local phase is interesting for numerous image processing tasks. Recently, the extension of the analytic signal from 1D to 2D, covering also intrinsic 2D structures, was proposed. We show the advantages of this improved concept on ultrasound RF and B-mode images. Precisely, we use the 2D analytic signal for the envelope detection of RF data. This leads to advantages for the extraction of the information-bearing signal from the modulated carrier wave. We illustrate this, first, by visual assessment of the images, and second, by performing goodness-of-fit tests to a Nakagami distribution, indicating a clear improvement of statistical properties. Finally, we show that the 2D analytic signal allows for an improved estimation of local features on B-mode images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, R., Gooding, M., Christlieb, M., Brady, M.: Advanced phase-based segmentation of multiple cells from brightfield microscopy images. In: ISBI (2008)

    Google Scholar 

  2. Averbuch, A., Coifman, R., Donoho, D., Elad, M., Israeli, M.: Fast and accurate polar Fourier transform. Applied and Computational Harmonic Analysis 21(2), 145–167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bock, R.K., Krischer, W.: The Data Analysis Briefbook, 1st edn. Springer-Verlag New York, Inc., Secaucus (1998)

    Book  MATH  Google Scholar 

  4. Boukerroui, D., Noble, J., Brady, M.: On the Choice of Band-Pass Quadrature Filters. Journal of Mathematical Imaging and Vision 21(1), 53–80 (2004)

    Article  MathSciNet  Google Scholar 

  5. Carneiro, G., Jepson, A.D.: Phase-based local features. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 282–296. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Cincotti, G., Loi, G., Pappalardo, M.: Frequency decomposition and compounding of ultrasound medical images with wavelet packets. IEEE Transactions on Medical Imaging 20(8), 764–771 (2001)

    Article  Google Scholar 

  7. D’Agostino, R., Stephens, M.: Goodness-of-fit techniques, p. 560. Marcel Dekker, Inc., New York (1986)

    MATH  Google Scholar 

  8. Destrempes, F., Meunier, J., Giroux, M.F., Soulez, G., Cloutier, G.: Segmentation in ultrasonic b-mode images of healthy carotid arteries using mixtures of nakagami distributions and stochastic optimization. IEEE Trans. Med. Imaging 28(2), 215–229 (2009), http://dx.doi.org/10.1109/TMI.2008.929098

    Article  Google Scholar 

  9. Dutt, V., Greenleaf, J.F.: Ultrasound echo envelope analysis using a homodyned k-distribution signal model. Ultrason. Imag. 16(4-5), 265–287 (1994)

    Article  Google Scholar 

  10. Estépar, R.S.J., Washko, G.G., Silverman, E.K., Reilly, J.J., Kikinis, R., Westin, C.-F.: Accurate airway wall estimation using phase congruency. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 125–134. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  12. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21(1), 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  13. Fleet, D., Jepson, A., Jenkin, M.: Phase-based disparity measurement. CVGIP: Image Understanding 53(2), 198–210 (1991)

    Article  MATH  Google Scholar 

  14. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  15. Grau, V., Becher, H., Noble, J.: Registration of multiview real-time 3-d echocardiographic sequences. IEEE Transactions on Medical Imaging 26(9), 1154–1165 (2007)

    Article  Google Scholar 

  16. Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.: Bone segmentation and fracture detection in ultrasound using 3D local phase features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 287–295. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Hedrick, W.R., Hykes, D.L., Starchman, D.E.: Ultrasound Physics and Instrumentation, 4th edn., Mosby (2004)

    Google Scholar 

  18. Jakeman, E., Pusey, P.N.: A model for non-rayleigh sea echo. IEEE Trans. Antennas Propag. 24(4-5), 806–814 (1976)

    Article  Google Scholar 

  19. Kovesi, P.: Image features from phase congruency. Videre: Journal of Computer Vision Research 1(3) (1999)

    Google Scholar 

  20. Mellor, M., Brady, M.: Phase mutual information as a similarity measure for registration. Medical Image Analysis 9(4), 330–343 (2005)

    Article  Google Scholar 

  21. Mulet-Parada, M., Noble, J.: 2D+ T acoustic boundary detection in echocardiography. Medical Image Analysis 4(1), 21–30 (2000)

    Article  Google Scholar 

  22. Nakagami, N.: The m-distribution, a general formula for intensity distribution of rapid fadings. In: Hoffman, W.G. (ed.) Statistical Methods in Radio Wave Propagation, Pergamon, Oxford (1960)

    Google Scholar 

  23. Shankar, P.M., Reid, J.M., Ortega, H., Piccoli, C.W., Goldberg, B.B.: Use of non-rayleigh statistics for the identification of tumors in ultrasonic b-scans of the breast. IEEE Trans. Med. Imag. 12(4-5), 687–692 (1993)

    Article  Google Scholar 

  24. Shankar, P., Dumane, V., Reid, J., Genis, V., Forsberg, F., Piccoli, C., Goldberg, B.: Classification of ultrasonic b-mode images of breast masses using nakagami distribution. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 48(2), 569–580 (2002)

    Article  Google Scholar 

  25. Szilágyi, T., Brady, S.M.: Feature extraction from cancer images using local phase congruency: a reliable source of image descriptors. In: ISBI, pp. 1219–1222 (2009)

    Google Scholar 

  26. Wachinger, C., Navab, N.: Alignment of viewing-angle dependent ultrasound images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 779–786. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Wang, P., Kelly, C., Brady, M.: Application of 3d local phase theory in vessel segmentation. In: ISBI, pp. 1174–1177 (2009)

    Google Scholar 

  28. Wietzke, L., Sommer, G., Fleischmann, O.: The geometry of 2d image signals. In: CVPR, pp. 1690–1697 (2009)

    Google Scholar 

  29. Xiaoxun, Z., Yunde, J.: Local Steerable Phase (LSP) Feature for Face Representation and Recognition. In: CVPR, vol. 2 (2006)

    Google Scholar 

  30. Zagzebski, J.: Essentials Of Ultrasound Physics, 1st edn., Mosby (1996)

    Google Scholar 

  31. Zang, D., Wietzke, L., Schmaltz, C., Sommer, G.: Dense optical flow estimation from the monogenic curvature tensor. In: Scale Space and Variational Methods in Computer Vision, pp. 239–250 (2007)

    Google Scholar 

  32. Zetsche, C., Barth, E.: Fundamental limits of linear filters in the visual processing of two dimensional signals. Vision Research (30) (1990)

    Google Scholar 

  33. Zhang, W., Noble, J.A., Brady, J.M.: Spatio-temporal registration of real time 3D ultrasound to cardiovascular MR sequences. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 343–350. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wachinger, C., Klein, T., Navab, N. (2011). The 2D Analytic Signal on RF and B-Mode Ultrasound Images. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics