Skip to main content

Flexible Dataset Combination and Modelling by Domain Decomposition Approaches

  • Conference paper
  • First Online:
Book cover VII Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 137))

Abstract

For geodetic and geophysical purposes, such as geoid determination or the study of the Earth’s structure, heterogeneous gravity datasets of various origins need to be combined over an area of interest, in order to derive a local gravity model at the highest possible resolution. The quality of the obtained gravity model strongly depends on the use of appropriate noise models for the different datasets in the combination process. In addition to random errors, those datasets are indeed often affected by systematic biases and correlated errors.

Here we show how wavelets can be used to realize such combination in a flexible and economic way, and how the use of domain decomposition approaches allows to recalibrate the noise models in different wavebands and for different areas. We represent the gravity potential as a linear combination of Poisson multipole wavelets (Holschneider et al. 2003). We compute the wavelet model of the gravity field by regularized least-squares adjustment of the datasets. To solve the normal system, we apply the Schwarz iterative algorithms, based on a domain decomposition of the models space. Hierarchical scale subdomains are defined as subsets of wavelets at different scales, and for each scale, block subdomains are defined based on spatial splittings of the area. In the computation process, the data weights can be refined for each subdomain, allowing to take into account the effect of correlated noises in a simple way. Similarly, the weight of the regularization can be recalibrated for each subdomain, introducing non-stationarity in the a priori assumption of smoothness of the gravity field.

We show and discuss examples of application of this method for regional gravity field modelling over a test area in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103:8129–8137

    Article  Google Scholar 

  • Biancale R, Lemoine J-M, Balmino G, Loyer S, Bruisma S, Perosanz F, Marty J-C, Gegout P (2005) Three years of decadal geoid variations from GRACE and LAGEOS data, CD-Rom, CNES/GRGS product

    Google Scholar 

  • Chambodut A, Panet I, Mandea M, Diament M, Jamet O, Holschneider M (2005) Wavelet frames: an alternative to the spherical harmonics representation of potential fields. Geophys J Int 168:875–899

    Article  Google Scholar 

  • Chan T, Mathew T (1994) Domain decomposition algorithms. Acta Numerica 61–143

    Google Scholar 

  • Ditmar P, Klees R, Liu X (2007) Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. J Geodes 81:81–96

    Article  Google Scholar 

  • Drinkwater M, Haagmans R, Muzzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core explorer. Proceedings of the 3rd GOCE User Workshop, 6–8 November 2006, Frascati, Italy, pp 1–7, ESA SP-627

    Google Scholar 

  • Engl HW (1987) On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems. J Approx Theory 49:55–63

    Article  Google Scholar 

  • Featherstone W, Evans JD, Olliver JG (1998) A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geodes 72(3):154–160

    Article  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics), Oxford, Clarendon, Oxford

    Google Scholar 

  • Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Inter 135:107–124

    Article  Google Scholar 

  • Kern M, Schwarz P, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geodes 77(3–4):217–225

    Article  Google Scholar 

  • Koch K-R (1986) Maximum likelihood estimate of variance components. Bull Geodes 60:329–338

    Article  Google Scholar 

  • Kuroishi Y (2009) Improved geoid model determination for Japan from GRACE and a regional gravity field model. Earth Planets Space 61(7):807–813

    Google Scholar 

  • Kuroishi Y, Keller W (2005) Wavelet improvement of gravity field-geoid modeling for Japan. J Geophys Res 110:B03402. doi:10.1029/2004JB003371

    Article  Google Scholar 

  • Kusche J (2001) Implementation of multigrid solvers for satellite gravity anomaly recovery. J Geodes 74:773–782

    Article  Google Scholar 

  • Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geodes 76(11–12):641–652

    Article  Google Scholar 

  • Panet I, Jamet O, Diament M, Chambodut A (2004) Modelling the Earth’s gravity field using wavelet frames. In: Proceedings of the Geoid, Gravity and Space Missions 2004 IAG Symposium, Porto

    Google Scholar 

  • Panet I, Chambodut A, Diament M, Holschneider M, Jamet O (2006) New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP and sea-surface data. J Geophys Res 111:B09403. doi:10.1029/2005JB004141

    Article  Google Scholar 

  • Sansò F, Tscherning CC (2003) Fast spherical collocation: theory and examples. J Geodes, 77, 101-112

    Article  Google Scholar 

  • Schmidt M, Kusche J, Shum CK, Han S-C, Fabert O, van Loon J (2005) Multiresolution representation of regional gravity data. In: Jekeli, Bastos, Fernandes (eds) Gravity, geoid and space missions. IAG Symposia 129, Springer,New York

    Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tenzer R, Klees R (2008) The choice of the spherical radial basis functions in local gravity 709 field modeling. Studia Geophysica Geodetica 52(3):287–304

    Article  Google Scholar 

  • Wesseling P (ed) (1991) An introduction to multigrid methods. Wiley, New York, 294 p

    Google Scholar 

  • Xu J (1992) Iterative methods by space decomposition and subspace correction. SIAM Rev 34(4):581–613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Panet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panet, I., Kuroishi, Y., Holschneider, M. (2012). Flexible Dataset Combination and Modelling by Domain Decomposition Approaches. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds) VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_10

Download citation

Publish with us

Policies and ethics