Skip to main content

Mixed Multiscale Methods for Heterogeneous Elliptic Problems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 83))

Abstract

We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such problems arise in many contexts, including flow in porous media. The coefficient in the elliptic problem (the permeability of the porous medium) is assumed to be spatially heterogeneous. The emphasis here is on accurate approximation of the solution with respect to the scale of variation in this coefficient. Homogenization and upscaling techniques alone are generally inadequate for this problem. As an alternative, multiscale numerical methods have been developed. They can be viewed in one of three equivalent frameworks: as a Galerkin or finite element method with nonpolynomial basis functions, as a variational multiscale method with standard finite elements, or as a domain decomposition method with restricted degrees of freedom on the interfaces. We treat each case, and discuss the advantages of the approach for devising effective local multiscale methods. Included is recent work on methods that incorporate information from homogenization theory and effective domain decomposition methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Aarnes and B.-O. Heimsund. Multiscale discontinuous Galerkin methods for elliptic problems with multiple scales. In Timothy J. Barth et al., editors, Multiscale Methods in Science and Engineering, volume 44 of Lecture Notes in Computational Science and Engineering, pages 1–20. Springer Berlin Heidelberg, 2005.

    Google Scholar 

  2. J. E. Aarnes, Y. Efendiev, and L. Jiang. Mixed multiscale finite element methods using limited global information. Multiscale Model. Simul., 7(2):655–676, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. E. Aarnes. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul., 2(3):421–439, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. E. Aarnes, S. Krogstad, and K.-A. Lie. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul., 5:337–363, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Arbogast. Numerical subgrid upscaling of two-phase flow in porous media. In Z. Chen, R. E. Ewing, and Z.-C. Shi, editors, Numerical treatment of multiphase flows in porous media, volume 552 of Lecture Notes in Physics, pages 35–49. Springer, Berlin, 2000.

    Google Scholar 

  6. T. Arbogast. Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal., 42:576–598, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Arbogast. Homogenization-based mixed multiscale finite elements for problems with anisotropy. Multiscale Model. Simul., 9(2):624–653, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Arbogast and K. J. Boyd. Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal., 44(3):1150–1171, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal., 37:1295–1315, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Arbogast, S. E. Minkoff, and P. T. Keenan. An operator-based approach to upscaling the pressure equation. In V. N. Burganos et al., editors, Computational Methods in Water Resources XII, Vol. 1: Computational Methods in Contamination and Remediation of Water Resources, pages 405–412, Southampton, U.K., 1998. Computational Mechanics Publications.

    Google Scholar 

  11. T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov. A multiscale mortar mixed finite element method. Multiscale Model. Simul., 6(1):319–346, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Arbogast and H. Xiao. A multiscale mortar mixed space based on homogenization for heterogeneous elliptic problems. Submitted, 2011.

    Google Scholar 

  13. I. Babuška. The finite element method with Lagrangian multipliers. Numer. Math., 20: 179–192, 1973.

    Article  MATH  Google Scholar 

  14. I. Babuška, G. Caloz, and J. E. Osborn. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31:945–981, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Babuška and R. Lipton. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Technical Report 10–12, Institute for Computational Engineering and Sciences, Univ. of Texas, Austin, Texas, USA, Mar. 2010.

    Google Scholar 

  16. I. Babuška and J. E. Osborn. Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal., 20:510–536, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Bear. Dynamics of Fluids in Porous Media. Dover, New York, 1972.

    MATH  Google Scholar 

  18. J. Bear and A. H.-D. Cheng. Modeling Groundwater Flow and Contaminant Transport. Springer, New York, 2010.

    Book  MATH  Google Scholar 

  19. A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structure. North-Holland, Amsterdam, 1978.

    Google Scholar 

  20. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: The mortar element method. In H. Brezis and J. L. Lions, editors, Nonlinear partial differential equations and their applications. Longman Scientific & Technical, UK, 1994.

    Google Scholar 

  21. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  22. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO, 8:129–151, 1974.

    MathSciNet  Google Scholar 

  23. F. Brezzi. Interacting with the subgrid world. In Numerical Analysis, 1999, pages 69–82. Chapman and Hall, 2000.

    Google Scholar 

  24. F. Brezzi, J. Douglas, Jr., R. Duràn, and M. Fortin. Mixed finite elements for second order elliptic problems in three variables. Numer. Math., 51:237–250, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Brezzi, J. Douglas, Jr., and L. D. Marini. Two families of mixed elements for second order elliptic problems. Numer. Math., 47:217–235, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  27. Y. Chen and L. J. Durlofsky. Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Por. Med., 62:157–185, 2006.

    Article  MathSciNet  Google Scholar 

  28. Z. Chen and T. Y. Hou. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp., 72:541–576, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  29. Ph. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

    Google Scholar 

  30. Weinan E and B. Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1:87–132, 2003.

    Google Scholar 

  31. Y. Efendiev, J. Galvis, and X.-H. Wu. Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys., 230(4):937–955, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  32. Y. Efendiev, V. Ginting, T. Y. Hou, and R. E. Ewing. Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys., 220(1):155–174, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  33. Y. R. Efendiev, T. Y. Hou, and X.-H. Wu. Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal., 37:888–910, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. B. Folland. Introduction to Partial Differential Equations. Princeton, 1976.

    Google Scholar 

  35. B. Ganis and I. Yotov. Implementation of a mortar mixed finite element method using a multiscale flux basis. Comput. Methods Appl. Mech. Engrg., 198:3989–3998, 2009.

    Article  MathSciNet  Google Scholar 

  36. D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  37. V. Ginting. Analysis of two-scale finite volume element method for elliptic problem. J. Numer. Math., 12(2):119–141, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element methods for elliptic problems. In R. Glowinski et al., editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 144–172. SIAM, Philadelphia, 1988.

    Google Scholar 

  39. I. G. Graham and R. Scheichl. Robust domain decomposition algorithms for multiscale PDEs. Numer. Meth. Partial Diff. Eqns., 23(4):859–878, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.

    MATH  Google Scholar 

  41. M. A. Hesse, B. T. Mallison, and H. A. Tchelepi. Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Model. Simul., 7(2):934–962, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  42. U. L. Hetmaniuk and R. B. Lehoucq. A special finite element methods based on component mode synthesis techniques. ESAIM: Math. Modelling and Numer. Anal., 2010.

    Google Scholar 

  43. U. Hornung, editor. Homogenization and Porous Media. Interdisciplinary Applied Mathematics Series. Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  44. T. Y. Hou and X. H. Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134:169–189, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  45. T. Y. Hou, X.-H. Wu, and Z. Cai. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp., 68:913–943, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  46. T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg., 127:387–401, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  47. T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166:3–24, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  48. P. Jenny, S. H. Lee, and H. A. Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comp. Phys., 187:47–67, 2003.

    Article  MATH  Google Scholar 

  49. V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of Differential Operators and Integral Functions. Springer-Verlag, New York, 1994.

    Google Scholar 

  50. M. G. Larson and A. Målqvis. Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Engrg., 196(21–24):2313–2324, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Van Lent, R. Scheichl, and I. G. Graham. Energy minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs. Numer. Lin. Alg. with Applic., 16(10):775–799, 2009.

    Article  MATH  Google Scholar 

  52. S. P. MacLachlan and J. D. Moulton. Multilevel upscaling through variational coarsening. Water Resour. Res., 42, 2006.

    Google Scholar 

  53. J. D. Moulton, Jr. J. E. Dendy, and J. M. Hyman. The black box multigrid numerical homogenization algorithm. J. Comput. Phys., 142(1):80–108, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  54. J. Nolen, G. Papanicolaou, and O. Pironneau. A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul., 7(1):171–196, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. M. Nordbotten. Adaptive variational multiscale methods for multiphase flow in porous media. Multiscale Model. Simul., 7(3):1455–1473, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  56. G. Pencheva, M. Vohralik, M. F. Wheeler, and T. Wildey. Robust a posteriori error control and adaptivity for multiscale, multinumerics, and mortar coupling. Submitted, 2010.

    Google Scholar 

  57. J. M. Rath. Darcy flow, multigrid, and upscaling. In et al. W. W. Hager, editor, Multiscale Optimization Methods and Applications, volume 82 of Nonconvex Optimization and its Applications, pages 337–366. Springer, New York, 2006.

    Google Scholar 

  58. J. M. Rath. Multiscale Basis Optimization for Darcy Flow. PhD thesis, Univ. of Texas, Austin, Texas, May 2007.

    Google Scholar 

  59. R. A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of Finite Element Methods, number 606 in Lecture Notes in Math., pages 292–315. Springer-Verlag, New York, 1977.

    Google Scholar 

  60. E. Sanchez-Palencia. Non-homogeneous Media and Vibration Theory. Number 127 in Lecture Notes in Physics. Springer-Verlag, New York, 1980.

    Google Scholar 

  61. H. A. Schwarz. Gesammelte mathematische adhandlungen. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.

    Google Scholar 

  62. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method. Comput. Methods Appl. Mech. Engrg., 190:4081–4193, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  63. Jinchao Xu and L. Zikatanov. On an energy minimizing basis for algebraic multigrid methods. Comput. Vis. Sci., 7(3–4):121–127, 2004.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Science Foundation and the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Arbogast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arbogast, T. (2012). Mixed Multiscale Methods for Heterogeneous Elliptic Problems. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds) Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22061-6_8

Download citation

Publish with us

Policies and ethics