Skip to main content

Uncertainty Quantification for Subsurface Flow Problems Using Coarse-Scale Models

  • Chapter
  • First Online:
Numerical Analysis of Multiscale Problems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 83))

Abstract

The multiscale nature of geological formations can have a strong impact on subsurface flow processes. In an attempt to characterize these formations at all relevant length scales, highly resolved property models are typically constructed. This high degree of detail greatly complicates flow simulations and uncertainty quantification. To address this issue, a variety of computational upscaling (numerical homogenization) procedures have been developed. In this chapter, a number of the existing approaches are described. These include single-phase parameter upscaling (the computation of coarse-scale permeability or transmissibility) and two-phase parameter upscaling (the computation of coarse-scale relative permeability curves) procedures. Methods that range from purely local to fully global are considered. Emphasis is placed on the performance of these techniques for uncertainty quantification, where many realizations of the geological model are considered. Along these lines, an ensemble-level upscaling approach is described, in which the goal is to provide coarse models that capture ensemble flow statistics (such as the cumulative distribution function for oil production) consistent with those of the underlying fine-scale models rather than agreement on a realization-by-realization basis. Numerical results highlighting the relative advantages and limitations of the various methods are presented. In particular, the ensemble-level upscaling approach is shown to provide accurate statistical predictions at an acceptable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarnes JE (2004) On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Modeling and Simulation 2:421–439

    Article  MATH  MathSciNet  Google Scholar 

  2. Aarnes JE, Efendiev Y (2007) Mixed multiscale finite element methods for stochastic porous media flows. SIAM Journal on Scientific Computing 30(5):2319–2339

    Article  MathSciNet  Google Scholar 

  3. Aarnes JE, Krogstad S, Lie KA (2006) A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Modeling and Simulation 5(2):337–363

    Article  MATH  MathSciNet  Google Scholar 

  4. Aavatsmark I (2002) An introduction to multipoint flux approximations for quadrilateral grids. Computational Geosciences 6:405–432

    Article  MATH  MathSciNet  Google Scholar 

  5. Arbogast T (2002) Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Computational Geosciences 6:453–481

    Article  MATH  MathSciNet  Google Scholar 

  6. Aziz K, Settari A (1986) Petroleum Reservoir Simulation. Elsevier, New York

    Google Scholar 

  7. Barker JW, Thibeau S (1997) A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Engineering 12:138–143

    Article  Google Scholar 

  8. Bourgeat A (1984) Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution. Computer Methods in Applied Mechanics and Engineering 47:205–216

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen T, Gerritsen MG, Durlofsky LJ, Lambers JV (2009) Adaptive local-global VCMP methods for coarse-scale reservoir modeling. Paper SPE 118994 presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, February 2–4

    Google Scholar 

  10. Chen T, Gerritsen MG, Lambers JV, Durlofsky LJ (2010) Global variable compact multipoint methods for accurate upscaling with full-tensor effects. Computational Geosciences 14:65–81

    Article  MATH  Google Scholar 

  11. Chen Y, Durlofsky LJ (2006a) Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transport in Porous Media 62:157–185

    Article  MathSciNet  Google Scholar 

  12. Chen Y, Durlofsky LJ (2006b) Efficient incorporation of global effects in upscaled models of two-phase flow and transport in heterogeneous formations. Multiscale Modeling and Simulation 5:445–475

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen Y, Durlofsky LJ (2008) Ensemble-level upscaling for efficient estimation of fine-scale production statistics. SPE Journal 13:400–411

    Article  Google Scholar 

  14. Chen Y, Li Y (2009) Local-global two-phase upscaling of flow and transport in heterogeneous formations. Multiscale Modeling and Simulation 8:125–153

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen Y, Li Y (2010) Incorporation of global effects in two-phase upscaling for modeling flow and transport with full-tensor anisotropy. In: Proceedings of the 12th European Conference on the Mathematics of Oil Recovery, Oxford, UK

    Google Scholar 

  16. Chen Y, Wu XH (2008) Upscaled modeling of well singularity for simulating flow in heterogeneous formations. Computational Geosciences 12:29–45

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen Y, Durlofsky LJ, Gerritsen M, Wen XH (2003) A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Advances in Water Resources 26:1041–1060

    Article  Google Scholar 

  18. Chen Y, Durlofsky LJ, Wen XH (2004) Robust coarse scale modeling of flow and transport in heterogeneous reservoirs. In: Proceedings of the 9th European Conference on the Mathematics of Oil Recovery, Cannes, France

    Google Scholar 

  19. Chen Y, Mallison BT, Durlofsky LJ (2008) Nonlinear two-point flux approximation for modeling full-tensor effects in subsurface flow simulations. Computational Geosciences 12:317–335

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen Y, Park K, Durlofsky LJ (2011) Statistical assignment of upscaled flow functions for an ensemble of geological models. Computational Geosciences 15:35–51

    Article  MATH  Google Scholar 

  21. Chen Z, Hou TY (2003) A mixed finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation 72:541–576

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen Z, Yue X (2003) Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Modeling and Simulation 1:260–303

    Article  MATH  MathSciNet  Google Scholar 

  23. Christie MA (2001) Flow in porous media – scale up of multiphase flow. Current Opinion in Colloid & Interface Science 6:236–241

    Article  Google Scholar 

  24. Christie MA, Blunt MJ (2001) Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reservoir Evaluation & Engineering 4:308–317

    Article  Google Scholar 

  25. Darman NH, Pickup GE, Sorbie KS (2002) A comparison of two-phase dynamic upscaling methods based on fluid potentials. Computational Geosciences 6:5–27

    Article  MATH  Google Scholar 

  26. Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and User’s Guide, 2nd edition. Oxford University Press, New York

    Google Scholar 

  27. Ding Y (1995) Scaling-up in the vicinity of wells in heterogeneous field. Paper SPE 29137 presented at the SPE Symposium on Reservoir Simulation, San Antonio, Texas, February 12–15

    Google Scholar 

  28. Durlofsky LJ (1991) Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resources Research 27:699–708

    Article  Google Scholar 

  29. Durlofsky LJ, Milliken WJ, Bernath A (2000) Scaleup in the near-well region. SPE Journal 5:110–117

    Article  Google Scholar 

  30. Durlofsky LJ, Efendiev YR, Ginting V (2007) An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Advances in Water Resources 30: 576–588

    Article  Google Scholar 

  31. Efendiev Y, Hou TY (2009) Multiscale Finite Element Methods: Theory and Applications. Springer, New York

    MATH  Google Scholar 

  32. Efendiev Y, Ginting V, Hou T, Ewing R (2006) Accurate multiscale finite element methods for two-phase flow simulations. Journal of Computational Physics 220(1):155–174

    Article  MATH  MathSciNet  Google Scholar 

  33. Efendiev YR, Durlofsky LJ (2003) A generalized convection-diffusion model for subgrid transport in porous media. Multiscale Modeling and Simulation 1:504–526

    Article  MATH  MathSciNet  Google Scholar 

  34. Efendiev YR, Durlofsky LJ, Lee SH (2000) Modeling of subgrid effects in coarse scale simulations of transport in heterogeneous porous media. Water Resources Research 36: 2031–2041

    Article  Google Scholar 

  35. Farmer CL (2002) Upscaling: a review. International Journal for Numerical Methods in Fluids 40:63–78

    Article  MATH  MathSciNet  Google Scholar 

  36. Gerritsen M, Lambers J (2008) Integration of local-global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations. Computational Geosciences 12:193–218

    Article  MATH  MathSciNet  Google Scholar 

  37. Gerritsen MG, Durlofsky LJ (2005) Modeling fluid flow in oil reservoirs. Annual Review of Fluid Mechanics 37:211–238

    Article  Google Scholar 

  38. Hajibeygi H, Jenny P (2009) Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media. Journal of Computational Physics 228(14):5129–5147

    Article  MATH  MathSciNet  Google Scholar 

  39. Hesse MA, Mallison BT, Tchelepi HA (2008) Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Modeling and Simulation 7(2): 934–962

    Article  MATH  MathSciNet  Google Scholar 

  40. Hewett TA, Yamada T (1997) Theory for the semi-analytical calculation of oil recovery and effective relative permeabilities using streamtubes. Advances in Water Resources 20:279–292

    Article  Google Scholar 

  41. Holden L, Nielsen BF (2000) Global upscaling of permeability in heterogeneous reservoirs: the output least squares (OLS) method. Transport in Porous Media 40:115–143

    Article  MathSciNet  Google Scholar 

  42. Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics 134:169–189

    Article  MATH  MathSciNet  Google Scholar 

  43. Hou TY, Westhead A, Yang D (2006) A framework for modeling subgrid effects for two-phase flows in porous media. Multiscale Modeling and Simulation 5(4):1087–1127

    Article  MATH  MathSciNet  Google Scholar 

  44. Hui M, Durlofsky LJ (2005) Accurate coarse modeling of well-driven, high-mobility-ratio displacements in heterogeneous reservoirs. Journal of Petroleum Science and Engineering 49:37–56

    Article  Google Scholar 

  45. Jenny P, Lunati I (2009) Modeling complex wells with the multi-scale finite-volume method. Journal of Computational Physics 228(3):687–702

    Article  MATH  MathSciNet  Google Scholar 

  46. Jenny P, Lee SH, Tchelepi HA (2003) Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. Journal of Computational Physics 187:47–67

    Article  MATH  Google Scholar 

  47. Jiang L, Efendiev Y, Mishev I (2010) Mixed multiscale finite element methods using approximate global information based on partial upscaling. Computational Geosciences 14(2):319–341

    Article  MATH  Google Scholar 

  48. Juanes R, Dub FX (2008) A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms. Computational Geosciences 12(3):273–295

    Article  MATH  MathSciNet  Google Scholar 

  49. Kolyukhin D, Espedal M (2010) Modified adaptive local-global upscaling method for discontinuous permeability distribution. Computational Geosciences 14(4):675–689

    Article  MATH  MathSciNet  Google Scholar 

  50. Krogstad S, Durlofsky LJ (2009) Multiscale mixed-finite-element modeling of coupled wellbore/near-well flow. SPE Journal 14(1):78–87

    Article  Google Scholar 

  51. Kyte JR, Berry DW (1975) New pseudo functions to control numerical dispersion. SPE Journal 15:269–275

    Google Scholar 

  52. Lambers J, Gerritsen M, Mallison B (2008) Accurate local upscaling with compact multipoint transmissibility calculations. Computational Geosciences 12:399–416

    Article  MATH  MathSciNet  Google Scholar 

  53. Lee SH, Zhou H, Tchelepi HA (2009) Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations. Journal of Computational Physics 228(24):9036–9058

    Article  MATH  MathSciNet  Google Scholar 

  54. Muggeridge AH, Cuypers M, Bacquet C, Barker JW (2002) Scale-up of well performance for reservoir flow simulation. Petroleum Geoscience 8:133–139

    Article  Google Scholar 

  55. Nakashima T, Durlofsky LJ (2010) Accurate representation of near-well effects in coarse-scale models of primary oil production. Transport in Porous Media 83:741–770

    Article  Google Scholar 

  56. Nielsen BF, Tveito A (1998) An upscaling method for one-phase flow in heterogeneous reservoirs. A weighted output least squares (WOLS) approach. Computational Geosciences 2:93–123

    Article  MATH  MathSciNet  Google Scholar 

  57. Niessner J, Helmig R (2007) Multi-scale modeling of three-phase-three-component processes in heterogeneous porous media. Advances in Water Resources 30(11):2309–2325

    Article  Google Scholar 

  58. Oren P, Bakke S (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. Journal of Petroleum Science and Engineering 39(3-4):177–199

    Article  Google Scholar 

  59. Peaceman DW (1983) Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE Journal 23:531–543

    Google Scholar 

  60. Pickup GE, Ringrose PS, Jensen JL, Sorbie KS (1994) Permeability tensors for sedimentary structures. Mathematical Geology 26:227–250

    Article  Google Scholar 

  61. Potsepaev R, Farmer CL, Fitzpatrick AJ (2009) Multipoint flux approximations via upscaling. Paper SPE 118994 presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, February 2–4

    Google Scholar 

  62. Renard P, de Marsily G (1997) Calculating effective permeability: a review. Advances in Water Resources 20:253–278

    Article  Google Scholar 

  63. Romeu R, Noetinger B (1995) Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media. Water Resources Research 31:943–959

    Article  Google Scholar 

  64. Stone HL (1991) Rigorous black oil pseudo functions. Paper SPE 21207 presented at the SPE Symposium on Reservoir Simulation, Anaheim, California, February 17–20

    Google Scholar 

  65. Suzuki K, Hewett TA (2002) Sequential upscaling method. Transport in Porous Media 46: 179–212

    Article  Google Scholar 

  66. Wallstrom TC, Hou S, Christie MA, Durlofsky LJ, Sharp DH, Zou Q (2002) Application of effective flux boundary conditions to two-phase upscaling in porous media. Transport in Porous Media 46:155–178

    Article  MathSciNet  Google Scholar 

  67. Wen XH, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. Journal of Hydrology 183:ix–xxxii

    Google Scholar 

  68. Wen XH, Durlofsky LJ, Edwards MG (2003) Use of border regions for improved permeability upscaling. Mathematical Geology 35:521–547

    Article  MATH  Google Scholar 

  69. White CD, Horne RN (1987) Computing absolute transmissibility in the presence of fine-scale heterogeneity. Paper SPE 16011 presented at the SPE Symposium on Reservoir Simulation, San Antonio, Texas, February 1–4

    Google Scholar 

  70. Wolfsteiner C, Lee SH, Tchelepi HA (2006) Well modeling in the multiscale finite volume method for subsurface flow simulation. Multiscale Modeling and Simulation 5:900–917

    Article  MATH  MathSciNet  Google Scholar 

  71. Wu XH, Efendiev YR, Hou TY (2002) Analysis of upscaling absolute permeability. Discrete and Continuous Dynamical Systems, Series B 2:185–204

    Article  MATH  MathSciNet  Google Scholar 

  72. Wu XH, Parashkevov R, Stone M, Lyons S (2008) Global scale-up on reservoir models with piecewise constant permeability field. Journal of Algorithms & Computational Technology 2:223–247

    Article  Google Scholar 

  73. Yue X, E W (2007) The local microscale problem in the multiscale modeling of strongly heterogeneous media: effects of boundary conditions and cell size. Journal of Computational Physics 222(2):556–572

    Google Scholar 

  74. Zhang P, Pickup GE, Christie MA (2008) A new practical method for upscaling in highly heterogeneous reservoir models. SPE Journal 13:68–76

    Article  Google Scholar 

  75. Zijl W, Trykozko A (2001) Numerical homogenization of the absolute permeability using the conformal-nodal and mixed-hybrid finite element method. Transport in Porous Media 44: 33–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Durlofsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durlofsky, L.J., Chen, Y. (2012). Uncertainty Quantification for Subsurface Flow Problems Using Coarse-Scale Models. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds) Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22061-6_6

Download citation

Publish with us

Policies and ethics