Neue Therapieoptionen bei retinalen Erkrankungen: Was bringt die Zukunft?



Neue Einblicke in die Pathogenese retinaler Erkrankungen ermöglichen es, erstmals verschiedene pharmakologische Therapieansätze zu verfolgen und zu kombinieren. Im Folgenden sollen aktuelle und zukünftige Therapieoptionen insbesondere der altersabhängigen Makuladegeneration und des diabetischen Makulaödems dargelegt werden, jedoch soll auch aktuellen Therapieentwicklungen seltenerer Netzhauterkrankungen wie beispielsweise der makulären Teleangiektasie Rechnung getragen werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadieh H, Taei R, Soheilian M et al. (2007) Single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone for neovascular age-related macular degeneration. BMC Ophthalmol 7: 7–10CrossRefGoogle Scholar
  2. ARC1905 Given Either in Combination Therapy With Lucentis 0,5 mg/Eye in Subjects With Neovascular Age-Reated Macular Degeneration [Identifier NCT00709527].
  3. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45: 115–134PubMedCrossRefGoogle Scholar
  4. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42: 439–446PubMedGoogle Scholar
  5. Benz M, Nguyen Q, Chu K et al. (2007) CLEAR-IT-2: Interim results of the phase ii, randomized, controlled doseand interval-ranging study of repeated intravitreal vegf trap administration in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 48: ARVO E-Abstract 4549CrossRefGoogle Scholar
  6. Bevacizumab Eliminates the Angiogenic Threat of Retinopathy of Prematurity (BEAT-ROP) [Identifier NCT00622726].
  7. Bingaman D, Gu X, Landers R et al. (2007) AL-39324 Is More Potent and Efficacious Against Ocular NV vs. Other RTKi’s. Invest Ophthalmol Vis Sci 48: E-Abstract 1747Google Scholar
  8. Bone RA, Landrum JT, Guerra LH, Ruiz CA (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr 133: 992–998PubMedGoogle Scholar
  9. Boyer D (2008) SAILOR Study Results. American Academy of Ophthalmology Congress 2008. Atlanta, p 57Google Scholar
  10. Brouty-Boye D, Zetter BR (1980) Inhibition of cell motility by interferon. Science 208: 516–518PubMedCrossRefGoogle Scholar
  11. Brown DM, Campochiaro PA, Singh RP et al. (2010) Ranibizumab for macular edema following central retinal vein occlusion six-month primary end point results of a phase III study. Ophthalmology 117: 1124–1133PubMedCrossRefGoogle Scholar
  12. Brown DM, Kaiser PK, Michels M et al. (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355: 1432–1444PubMedCrossRefGoogle Scholar
  13. Browning AC, Chung AK, Ghanchi F et al. (2005) Verteporfin photodynamic therapy of choroidal neovascularization in angioid streaks: one-year results of a prospective case series. Ophthalmology 112: 1227–1231PubMedCrossRefGoogle Scholar
  14. Bruckner A (2006) Small interfering rna (CAND5) for the treatment of subfoveal choroidal neovascularization due to age-related macular degeneration. Combined Retina Society/Gonin Society Meeting, Cape TownGoogle Scholar
  15. Campochiaro PA, Heier JS, Feiner L et al. (2010) Ranibizumab for macular edema following branch retinal vein occlusion six-month primary end point results of a phase III study. Ophthalmology 117: 1102–1112PubMedCrossRefGoogle Scholar
  16. Chakravarthy U, Adamis AP, Cunningham ET Jr et al. (2006) Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology 113: 1508, e1501–1525Google Scholar
  17. Chappelow AV, Kaiser PK (2008) Neovascular age-related macular degeneration: potential therapies. Drugs 68: 1029–1036PubMedCrossRefGoogle Scholar
  18. Charbel Issa P, Holz FG, Scholl HPN (2007) Findings in fluorescein angiography and optical coherence tomography after intravitreal bevacizumab in type 2 idiopathic macular telangiectasia. Ophthalmology 114: 1736–1742PubMedCrossRefGoogle Scholar
  19. Charbel Issa P, Finger RP, Holz FG, Scholl HPN (2008) Eighteen-month follow-up of intravitreal bevacizumab in type 2 idiopathic macular telangiectasia. Br J Ophthalmol 92: 941–945PubMedCrossRefGoogle Scholar
  20. Charbel Issa P, Finger RP, Kruse K, Baumüller S, Scholl HP, Holz FG (2011) Monthly ranibizumab for nonproliferative macular telangiectasia type 2: a 12-month prospective study. Am J Ophthalmol Feb 18. [Epub ahead of print]Google Scholar
  21. Chen Z, Mak C, Renick J et al. (2007) A dual VEGFR/JAK2 kinase inhibitor suitable for topical delivery inhibits choroidal neovascularization in mice. Invest Ophthalmol Vis Sci 48: E-Abstract 1469Google Scholar
  22. Clark AF, Mellon J, Li XY et al. (1999) Inhibition of intraocular tumor growth by topical application of the angiostatic steroid anecortave acetate. Invest Ophthalmol Vis Sci 40: 2158–2162PubMedGoogle Scholar
  23. Cohen SY (2009) Anti-VEGF drugs as the 2009 first-line therapy for choroidal neovascularization in pathologic myopia. Retina 29: 1062–1066PubMedCrossRefGoogle Scholar
  24. Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18: 220–223PubMedCrossRefGoogle Scholar
  25. Collier RJ, Patel Y, Martin EA, Dembinska O, Hellberg M, Krueger DS, Kapin MA, Romano C (2011) Agonists at the serotonin receptor (5HT1A) protect the retina from severe photo-oxidative stress. Invest Ophthalmol Vis Sci 52: 2118–2126PubMedCrossRefGoogle Scholar
  26. CoMentis Co (2007) CoMentis initiates phace II clinical trial for AMD eye drop [press release]Google Scholar
  27. Comparison of Age-Related Macular Degeneration Treatments Trials (CATT).
  28. Complement Inhibition with Eculizumab for the treatment of non-exsudative macular degeneration [Identifier NCT00935883].
  29. Connor KM, SanGiovanni JP, Lofqvist C et al. (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13: 868–873PubMedCrossRefGoogle Scholar
  30. Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375–1378PubMedCrossRefGoogle Scholar
  31. D‘Amico D, Bird AC (2004) VEGF Inhibition Study in Ocular Neovascularization-1 (VISION-1): Safety Evaluation from the Pivotal Macugen TM (Pegaptanib Sodium) Clinical Trials. Invest Ophthalmol Vis Sci 45: E-Abstract 2363Google Scholar
  32. D‘Amico DJ, Goldberg MF, Hudson H, Jerdan JA, Krueger DS, Luna SP, Robertson SM, Russell S, Singerman L, Slakter JS, Yannuzzi L, Zilliox P, Anecortave Acetate Clinical Study Group. Anecortave acetate as monotherapy for treatment of subfoveal neovasculariszation in age-related macular degeneration: twelve-month clinical outcomes. Ophthalmologe 110: 2372–2383Google Scholar
  33. Dejneka NS, Kuroki AM, Fosnot J, Tang W, Tolentino MJ, Bennett J (2004) Systemic rapamycin inhibits retinal and choroidal neovascularization in mice. Mol Vis 10: 964–972PubMedGoogle Scholar
  34. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laseror triamcinolone plus prompt laser for diabetic macular edema Ophthalmology 117: 1064–1077PubMedGoogle Scholar
  35. DME And VEGF Trap-Eye: Investigation of Clinical Impact (DA VINCI) [Identifier NCT00789477].
  36. Efficacy and safety of ranibizumab in patients with visual impairment due to choroidal neovascularization secondary to pathologic myopia [Identifier NCT01217944].
  37. Engler CB, Sander B, Koefoed P, Larsen M, Vinding T, Lund-Andersen H (1993) Interferon alpha-2a treatment of patients with subfoveal neovascular macular degeneration. A pilot investigation. Acta Ophthalmol (Copenh) 71: 27–31CrossRefGoogle Scholar
  38. Ezekowitz RA, Mulliken JB, Folkman J (1992) Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 326: 1456–1463PubMedCrossRefGoogle Scholar
  39. Falsini B, Piccardi M, Iarossi G, Fadda A, Merendino E, Valentini P (2003) Influence of short-term antioxidant supplementation on macular function in age-related maculopathy: a pilot study including electrophysiologic assessment. Ophthalmology 110: 51–60; discussion 61PubMedCrossRefGoogle Scholar
  40. Finger RP, Charbel Issa P, Ladewig M, Holz FG, Scholl HPN (2008) Intravitreal bevacizumab for choroidal neovascularisation associated with pseudoxanthoma elasticum. Br J Ophthalmol 92: 483–487PubMedCrossRefGoogle Scholar
  41. Fluocinolone Acetonide Implant Compared to Sham Injection in Patients With Diabetic Macular Edema [NCT00344968].
  42. Fung WE (1991) Interferon alpha 2a for treatment of age-related macular degeneration. Am J Ophthalmol 112: 349–350PubMedGoogle Scholar
  43. Gan IM, Ugahary LC, van Dissel JT et al. (2005) Effect of intravitreal dexamethasone on vitreous vancomycin concentrations in patients with suspected postoperative bacterial endophthalmitis. Graefes Arch Clin Exp Ophthalmol 243: 1186–1189PubMedCrossRefGoogle Scholar
  44. Garrett K, Shen WY, Rakoczy PE (2001) In vivo use of oligonucleotides to inhibit choroidal neovascularization in the eye. J Gene Med 3: 373–383PubMedCrossRefGoogle Scholar
  45. Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2: 733–740PubMedCrossRefGoogle Scholar
  46. Geographic Atrophy Treatment Study [Identifier NCT00890097].
  47. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351: 2805–2816PubMedCrossRefGoogle Scholar
  48. Group PTfMDS (1997) Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial. Pharmacological Therapy for Macular Degeneration Study Group. Arch Ophthalmol 115: 865–872Google Scholar
  49. Group TAS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119: 1417–1436Google Scholar
  50. Group TES (2002) Anti-VEGF therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase IB results. Association for Research in Vision and Ophthalmology Annual Meeting. Fort Lauderdale, FL, USA. Invest Ophthalmol Vis Sci 2002: E-AbstractGoogle Scholar
  51. Gruber BL, Marchese MJ, Kew R (1995) Angiogenic factors stimulate mast-cell migration. Blood 86: 2488–2493PubMedGoogle Scholar
  52. Guba M, von Breitenbuch P, Steinbauer M et al. (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8: 128–135PubMedCrossRefGoogle Scholar
  53. Hall NF, Gale CR, Syddall H, Phillips DI, Martyn CN (2001) Risk of macular degeneration in users of statins: cross sectional study. BMJ 323: 375–376PubMedCrossRefGoogle Scholar
  54. Haller JA, Bandello F, Belfort R Jr et al. (2010) Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 117: 1134–1146PubMedCrossRefGoogle Scholar
  55. Hammond B, Caruso-Avery M (2000) Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci 41: 1492–1497PubMedGoogle Scholar
  56. Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110: 527–536PubMedGoogle Scholar
  57. Holekamp N (2001) Deficiency of anti-angiogenic pigment epithelial-derived factor in the vitreous of patients with wet age-related macular degeneration. Retina Society Annual Meeting, ChicagoGoogle Scholar
  58. Holz F, Wolfensberger TJ, Piguet B, Gross-Jendroska M, Arden GB, Bird AC (1993) Oral zinc-therapy in age-related macular degeneration: a double blind study. Germ J Ophthalmol 2 (Suppl): 391Google Scholar
  59. Hruby K (1977) Aussichten und Grenzen der Behandlung seniler Makulopathien mit Phosphatiden. Wien Klin Wschr 89: 439–442PubMedGoogle Scholar
  60. Hunt S (2007) Increased dietary intake of omega-3-PUFA reduces pathological retinal angiogenesis. Ophthalmologe 104: 727–729PubMedCrossRefGoogle Scholar
  61. Infliximab, Sirolismus and Daclizumab to Treat Age-Related Macular Degeneration [Identifier NCT00304954].
  62. Institute NE (2008) Age-related Eye Diseases Study 2.
  63. Joussen AM, Rohrschneider K, Reichling J, Kirchhof B, Kruse FE (2000) Treatment of corneal neovascularization with dietary iso-flavonoids and flavonoids. Exp Eye Res 71: 483–487PubMedCrossRefGoogle Scholar
  64. Kaiser PK (2006) Antivascular endothelial growth factor agents and their development_ therapeutic implications in ocular diseases. Am J Ophthalmol 142: 660–668PubMedCrossRefGoogle Scholar
  65. Kaminski MS, Yolton DP, Jordan WT, Yolton RL (1993) Evaluation of dietary antioxidant levels and supplementation with ICAPS-Plus and Ocuvite. J Am Optom Assoc 64: 862–870PubMedGoogle Scholar
  66. Karciouglu Z (1982) Zinc in the eye. Surv Ophthalmol 27: 114CrossRefGoogle Scholar
  67. Kengatharan M, Verghese M, Kiuchi K, Cooke J, Campochiaro P (2007) Nicotinic receptor antagonist mecamylamine reduces laser-induced choroidal neovascularization in C57bl/6j mice. Invest Ophthalmol Vis Sci 48: EAbstract 6016Google Scholar
  68. Kleinman ME, Yamada K, Takeda A et al. (2008) Sequence – and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452: 591–597PubMedCrossRefGoogle Scholar
  69. Kleinmann D, Kimm T, Nivaggioli T et al. (2007) Sirolimus Inhibits VEGF-Induced Microvascular Hyperpermeability. Invest Ophthalmol Vis Sci 48: E-Abstract 1422Google Scholar
  70. Konner J, Dupont J (2004) Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 4 (Suppl 2): S81–85PubMedCrossRefGoogle Scholar
  71. Ladewig MS, Karl SE, Hamelmann V, Helb HM, Scholl HP, Holz FG, Eter N (2008) Combined intravitreal bevacizumab and photodynamic therapy for neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 246(1): 17–25PubMedCrossRefGoogle Scholar
  72. Lambert V, Munaut C, Noel A et al. (2001) Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. Faseb J 15: 1021–1027PubMedCrossRefGoogle Scholar
  73. Lockington D, Imrie F, Gillen J, Fitzpatrick A, Willison H (2010) Visual improvement in established central retinal vein occlusion with long-standing macular edema following systemic eculizumab treatment. Can J Ophthalmol 45: 649PubMedCrossRefGoogle Scholar
  74. Maier P, Unsoeld AS, Junker B et al. (2005) Intravitreal injection of specific receptor tyrosine kinase inhibitor PTK787/ZK222 584 improves ischemia-induced retinopathy in mice. Graefes Arch Clin Exp Ophthalmol 243: 593–600PubMedCrossRefGoogle Scholar
  75. Majji AB, Hayashi A, Kim HC, Grebe RR, de Juan E Jr (1999) Inhibition of choriocapillaris regeneration with genistein. Invest Ophthalmol Vis Sci 40: 1477–1486PubMedGoogle Scholar
  76. Massin P, Bandello F, Garweg JG et al. (2010) Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care 33: 2399–2405PubMedCrossRefGoogle Scholar
  77. Meyer C, Eter N, Holz F, SUSTAIN Study Group (2008) Ranibizumab in patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration. interim results from the Sustain Trial. ARVO 273: A582Google Scholar
  78. Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman AS (2005) Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology 112: 1035–1047PubMedCrossRefGoogle Scholar
  79. Miller J, Shima DT, Tolentino M et al. (1995) Inhibition of VEGF prevents ocular neovascularization in a monkey model. Invest Ophthalmol Vis Sci (Suppl): 401Google Scholar
  80. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA (2002) Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 43: 2428–2434PubMedGoogle Scholar
  81. Multi-Center Trial To Evaluate The Safety And Efficacy Of Pegaptanib Sodium(Macugen) Injected Into The Eye Every 6 Weeks For Up To 2 Years For Macular Swelling Associated With Diabetes, With An Open-Label Macugen Year Extension. [Identifier NCT00605280].
  82. Nakajima M, Cooney MJ, Tu AH et al. (2001) Normalization of retinal vascular permeability in experimental diabetes with genistein. Invest Ophthalmol Vis Sci 42: 2110–2114PubMedGoogle Scholar
  83. Nazari H Modarres M, Parvaresh MM, Ghasemi Falavarjani K (2010) Intravitreal bevacizumab in combination with laser therapy for the treatment of severe retinopathy of prematurity (ROP) associated with vitreous or retinal hemorrhage. Graefes Arch Clin Exp Ophthalmol 248: 1713–1718PubMedCrossRefGoogle Scholar
  84. Newsome DA, Swartz M, Leone NC, Elston RC, Miller E (1988) Oral zinc in macular degeneration. Arch Ophthalmol 106: 192–198PubMedGoogle Scholar
  85. Nguyen QD, Shah SM, Khwaja AA et al. (2010) Two-Year Outcomes of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) Study. Ophthalmology 117: 2146–2151PubMedCrossRefGoogle Scholar
  86. Nozaki M, Raisler B, Mett I et al. (2006) RTP801i: A novel anti-angiogenic strategy superior to and cooperative with VEGF-A blockade in suppressing CNV. Invest Ophthalmol Vis Sci 47: E-Abstract 900Google Scholar
  87. Open-Label, Pilot Study of TG10801 in Patients with Choroidal Neovascularisation due to AMD [Identifier NCT00509548].
  88. Pan-VEGF Blockade for the Treatment of Retinopathy of Prematurity (BLOCK-ROP) [Identifier NCT01232777].
  89. Parodi MB, Iacono P, Papayannis A et al. (2010) Laser photocoagulation, photodynamic therapy, and intravitreal bevacizumab for the treatment of juxtafoveal choroidal neovascularization secondary to pathologic myopia. Arch Ophthalmol 128: 437–442PubMedCrossRefGoogle Scholar
  90. Pauleikhoff D, van Kuijk FJ, Bird AC (2001) Makuläres Pigment und altersabhängige Makuladegeneration. Ophthalmologe 98: 511–519PubMedCrossRefGoogle Scholar
  91. Penn JS, Rajaratnam VS, Collier RJ, Clark AF (2001) The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 42: 283–290PubMedGoogle Scholar
  92. Pharmacokinetic and Efficacy Study of Fluocinolone Acetonide Inserts in Patients With Diabetic Macular Edema [NCT00490815].
  93. Phase 1 Safety Study of Single and Repeated Doses of JSM6427 (Intravitreal Injection) to Treat AMD.
  94. Phase 2 Study of an Ocular Sirolimus Formulation in Combination with Lucentis in Patients with Age-related Macular Degeneration [Identifier NCT00766337].
  95. Phase I Dose Escalation Study of PF-04523655 in Subjects with choroidal Neovascularization (CNV) Secondary to Age-related Macular Degeneration [Identifier NCT00725686].
  96. Photodynamic Therapy of Subfoveal Choroidal Neovascularization in Age-Related Macular Degeneration With Verteporfin: One-Year Results of 2 Randomized Clinical Trials – TAP Report. Treatment of Age-Related Macular Degeneration With Photodynamic Therapy (TAP) Study Group. Arch Ophthalmol 117: 1329–1345Google Scholar
  97. Prävention des Sehverlustes bei Patienten mit altersabhängiger Makuladegeneration durch intravitreale Injektion vonBevacizumab und Ranibizumab.
  98. Prevention of Vision Loss in Patients With Age-Related Macular Degeneration (AMD) by Intravitreal Injection of Bevacizumab and Ranibizumab (VIBERA).
  99. Prospective, Randomized, Multi-Center, Comparator Study Evaluating Efficacy and Safety of PF-04523655 Versus Laser in Subjects With Diabetic Macular Edema (DEGAS) [Identifier NCT00701181].
  100. Querques G (2009) Intravitreal pegaptanib sodium (Macugen) for diabetic macular oedema Acta Ophthalmol 87: 623–630Google Scholar
  101. Radu RA, Han Y, Bui TV et al. (2005) Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 46: 4393–4401PubMedCrossRefGoogle Scholar
  102. Randomised Controlled Trial of Alternative Treatments to Inhibit VEGF in Age-Related Choroidal Neovascularisation.
  103. Ranibizumab to Treat Choroidal Neovascularization (CNV) in Patients with Pseudoxanthoma Elasticum (PXE) [Identifier NCT00510965].
  104. Rasmussen H, Chu KW, Campochiaro P et al. (2001) Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 12: 2029–2032PubMedGoogle Scholar
  105. Rechtman E, Danis RP, Pratt LM, Harris A (2004) Intravitreal triamcinolone with photodynamic therapy for subfoveal choroidal neovascularisation in age related macular degeneration. Br J Ophthalmol 88: 344–347PubMedCrossRefGoogle Scholar
  106. Renno RZ, Youssri AI, Michaud N, Gragoudas ES, Miller JW (2002) Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43: 1574–1580PubMedGoogle Scholar
  107. Rich RM, Rosenfeld PJ, Puliafito CA et al. (2006) Short-term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Retina 26: 495–511PubMedCrossRefGoogle Scholar
  108. Rosenfeld PJ, Brown DM, Heier JS et al. (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355: 1419–1431PubMedCrossRefGoogle Scholar
  109. Rosenfeld PJ, Moshfeghi AA, Puliafito CA (2005) Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 36: 331–335PubMedGoogle Scholar
  110. Safety and Efficacy Study Evaluating the Combination of Bevasiranib & Lucentis Therapy in Wet AMD [Identifier NCT00499590].
  111. Safety and Efficacy Study Of Oral PTK787 in Patients With Subfoveal Choroidal Neovascularization Secondary to Age-related Macular Degeneration (AMD) (ADVANCE) [Idenitfier NCT00138632].
  112. Safety and Efficacy Study of Small Interfering RNA Molecule (Cand5) to Treat Diabetic Macular Edema [Identifier NCT00306904].
  113. Safety Study to Evaluate Pazopanib Eye Drops in Healthy Volunteers [Identifier NCT01072214].
  114. Saishin Y, Takahashi K, Lima e Silva R et al. (2003) VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195: 241–248PubMedCrossRefGoogle Scholar
  115. Schmidt-Erfurth U, Schlotzer-Schrehard U, Cursiefen C, Michels S, Beckendorf A, Naumann GO (2003) Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 44: 4473–4480PubMedCrossRefGoogle Scholar
  116. Scholl HP, Charbel Issa P, Walier M et al. (2008) Systemic complement activation in age-related macular degeneration. PLoS ONE 3: e2593PubMedCrossRefGoogle Scholar
  117. Schütt F, Pauleikhoff D, Holz FG (2002) Vitamine und Spurenelemente bei altersabhängiger Makuladegeneration. Aktuelle Empfehlungen, basierend auf den Resultaten der AREDS-Studie. Ophthalmologe 99: 301–303PubMedCrossRefGoogle Scholar
  118. Shalinsky DR, Brekken J, Zou H et al. (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci 878: 236–270PubMedCrossRefGoogle Scholar
  119. Shen J, Samul R, Silva RL et al. (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 13: 225–234PubMedCrossRefGoogle Scholar
  120. Slakter JS, Bochow TW, D‘Amico DJ et al. (2006) Anecortave acetate (15 milligrams) versus photodynamic therapy for treatment of subfoveal neovascularization in age-related macular degeneration. Ophthalmology 113: 3–13PubMedCrossRefGoogle Scholar
  121. Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch‘s membrane. Retina 19: 141–147PubMedCrossRefGoogle Scholar
  122. Spaide RF, Sorenson J, Maranan L (2003) Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology 110: 1517–1525PubMedCrossRefGoogle Scholar
  123. Spaide RF, Sorenson J, Maranan L (2005) Photodynamic therapy with verteporfin combined with intravitreal injection of triamcinolone acetonide for choroidal neovascularization. Ophthalmology 112: 301–304PubMedCrossRefGoogle Scholar
  124. Spaide RF, Laud K, Fine HF et al. (2006) Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26: 383–390PubMedCrossRefGoogle Scholar
  125. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157: 135–144PubMedCrossRefGoogle Scholar
  126. Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A (1998) Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest Ophthalmol Vis Sci 39: 2194–2200PubMedGoogle Scholar
  127. Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA (1990) Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest 63: 657–668PubMedGoogle Scholar
  128. Study of ARC1905 in Subjects With Dry Age-Reated Macular Degeneration [Identifier NCT00950638].
  129. Study of Fenretinide in the Treatment of Geographic Atrophy Associated with dry age-related Macular degeneration [Identifier NCT00429936].
  130. Study of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of ACU-4429 in Subjects with Geographic Atrophy [Identifier NCT01002950].
  131. Study to Evaluate the Pharmacodynamics, Safety, and Pharmacokinetics of Pazopanib Eye Drops in Adult Subjects with Neovascular AMD [Identifier NCT00612456].
  132. Study to Evaluate The Safety, Tolerability and PK of Pazopanib Eye Drops in Healthy Adult and Elderly Subjects [Identifier NCT00463320].
  133. Study Using Intravitreal Injections of a Small Interfering RNA in Patients With Age-Related Macular Degeneration.
  134. Takahashi K, Saishin Y, Saishin Y, King AG, Levin R, Campochiaro PA (2009) Suppression and regression of choroidal neovascularization by the multitargeted kinase inhibitor pazopanib. Arch Ophthalmol 127: 494–499PubMedCrossRefGoogle Scholar
  135. The CATT Research Group (2011) Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. N Engl J Med 2011; 364:1897–1908.
  136. The OMEGA Study: Use of Eye Drops to Treat Geographic Atrophy Associated with Age-Related Macular Degeneration [Identifier NCT00485394].
  137. Treatment of Corneal Neovascularisation with Topical Pazopanib [Identifier NCT01257750].
  138. Umeda N, Kachi S, Akiyama H et al. (2006) Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Mol Pharmacol 69: 1820–1828PubMedCrossRefGoogle Scholar
  139. VEGF Trap Eye: Investigation of Efficacy and Safety in Central Vein Occlusion (Copernicus) [Identifier NCT00943072].
  140. VEGF Trap Eye: Investigation of Efficacy and Safety in Central Vein Occlusion (Galileo) [Identifier NCT01012973].
  141. VEGF Trap-Eye in choroidal neovascularization Secondary to Pathologic myopia (mCNV) (Myrror) [Identifier NCT01249664].
  142. VEGF-Trap Eye: Investigation of Efficacy and Safety in Wet Age-Related Macular Degeneration [Identifier NCT00637377].
  143. WALTZ – Wet Age-Related Macular Degeneration (AMD) AL 39324 Treatment Examnition [Identifier NCT00992563].
  144. Wang B, Zou Y, Li H, Yan H, Pan JS, Yuan ZL (2005) Genistein inhibited retinal neovascularization and expression of vascular endothelial growth factor and hypoxia inducible factor 1 in a mouse model of oxygen-induced retinopathy. J Ocul Pharmacol Ther 21: 107–113PubMedCrossRefGoogle Scholar
  145. Wu WC, Yeh PT, Chen SN, Yang CM, Lai CC, Kuo HK (2011) Effects and complications of bevacizumab use in patients with retinopathy of prematurity: a multicenter study in Taiwan. Ophthalmology 118: 176–183PubMedCrossRefGoogle Scholar
  146. Zahn G, Vossmeyer D, Stragies R et al. (2009) Preclinical evaluation of the novel small-molecule integrin α5β1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Arch Ophthalmol 127: 1329–1335PubMedCrossRefGoogle Scholar
  147. Zahn G, Vossmeyer D, Stragies R, Wills M, Wong C, Knolle J (2007) JSM6427, a small molecule integrin alpha5beta1 inhibitor for inhibition of ocular angiogenesis. Invest Ophthalmol Vis Sci 48: E-Abstract 3430CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2011

Authors and Affiliations

  1. 1.Klinik und Poliklinik für AugenheilkundeUniversitätsklinikum MünsterMünster

Personalised recommendations