Advertisement

Pegaptanib zur Behandlung des diabetischen Makulaödems

Ergebnisse der Phase-III-Studie – Zellbiologische und physiologische Aspekte der Anti-VEGF-Behandlung
Chapter
  • 844 Downloads

Zusammenfassung

Eine Erkrankung der Makula ist in den Industrienationen der häufigste Grund für eine Erblindung. Nach WHO-Daten von 2002 sind die Ursachen hierfür in den Industrienationen zu 50% auf die altersabhängige Makuladegeneration (AMD) und zu ca. 18% auf die diabetische Retinopathie zurückzuführen (Resnikoff et al. 2004). Große Hoffnung für die Behandlung der exsudativen Form der AMD brachte die Einführung einer lokalen Therapie am Auge, die den »vascular endothelial growth factor« (VEGF) hemmt. Der Wachstumsfaktor VEGF spielt sowohl bei der AMD als auch bei der diabetischen Retinopathie eine entscheidende Rolle bei der Entstehung und Progression. Inhibitoren von VEGF sind zugelassene Medikamente für die Behandlung der altersabhängigen Makuladegeneration seit 2004. Die erste Zulassung erhielt Pegaptanib (Macugen®, Fa. Pfizer) und kurz darauf Ranibizumab (Lucentis®, Fa. Novartis). Zusätzlich zu den zugelassenen Präparaten findet sich eine breite Anwendung von Bevacizumab (Avastin®, Fa. Roche Pharma AG), ebenfalls ein VEGF-Inhibitor, der für die Behandlung bei Darmkrebs entwickelt wurde und nur hierfür zugelassen ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aiello LP, Edwards AR, Beck RW, Bressler NM, Davis MD, Ferris F, Glassman AR, Ip MS, Miller KM (2010) Diabetic Retinopathy Clinical Research Network. Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology 117: 946–953PubMedCrossRefGoogle Scholar
  2. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGFreceptor chimeric proteins. Proc Natl Acad Sci USA 92: 10457–10461PubMedCrossRefGoogle Scholar
  3. Browning AC, Dua HS, Amoaku WM (2008) The effect of growth factors on the proliferation and in vitro angiogenesis of human macular inner choroidal endothelial cells. Br J Ophthalmol 92: 1003–1008PubMedCrossRefGoogle Scholar
  4. Carneiro A, Falcao M, Pirraco A, Milheiro-Oliveira P, Falcao-Reis F, Soares R (2009) Coparative effects of bevacizumab, ranibizumab, pegaptanib at intravitreal dose range on endothelial cells. Exp Eye Res 88: 522–527PubMedCrossRefGoogle Scholar
  5. Costa R, Carneiro A, Rocha A, Pirraco A, Falcao M, Vasques L, Soares R (2009) Bevacizumab and ranibizumab on microvascular endothelial cells: A comparative study. J Cell Biochem 108: 1410–1417PubMedCrossRefGoogle Scholar
  6. Cunningham ET Jr, Adamis AP, Altaweel M et al.; Macugen Diabetic Retinopathy Study Group (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112: 1747–1757PubMedCrossRefGoogle Scholar
  7. Diabetic Retinopathy Clinical Research Network (2008) Randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 115: 1447–1459CrossRefGoogle Scholar
  8. Early Treatment Diabetic Retinopathy Study Research Group (1985) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 103: 1796–1806Google Scholar
  9. Erickson KK, Sundstrom JM, Antonetti DA (2007) Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 10: 103–117PubMedCrossRefGoogle Scholar
  10. Friburg TR, Tolentino M, LEVEL Study Group, Weber P, Patel S, Campbell S, Goldbaum M (2010) Pegaptanib sodium as maintenance therapy in neovascular age-related macular degeneration: the LEVEL study. Br J Ophthalmol 94: 1611–1617CrossRefGoogle Scholar
  11. Furguson TA, Apte RS (2008) Angiogenesis in eye disease: immunity gained or immunity lost? Semin Immunopathol 30: 111–119CrossRefGoogle Scholar
  12. Gandreault J, Fei D, Rusit J, Suboc P, Shin V (2005) Preclinical pharmacokinetics of Ranibizumab (Ahu Fab V2) after a single intravitreal administration. Invest. Ophthalmol Vis Sci 46: 726–733CrossRefGoogle Scholar
  13. Heiduschka P, Fietz H, Hofmeister S et al.; The Tübingen Bevacizumab Study Group (2007) Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci 48: 2814–2823PubMedCrossRefGoogle Scholar
  14. Hussain N, Ghanekar Y, Kaur J (2007) The future implications of anti-vascular endothelial growth factor therapy in ophthalmic practise. Indian J Ophthalmol 55: 445–450PubMedCrossRefGoogle Scholar
  15. Inan ÜÜ, Avci B, Kusbeci T, Kaderli B, Avci R, Temel SG (2007) Preclinical safety evaluation of intravitreal injection of full-length humanized vascular endothelial growth factor antibody in rabbit eyes. Invest Ophthalmol Vis Sci 48: 1773–1781PubMedCrossRefGoogle Scholar
  16. Joussen AM, Smyth N, Niessen C (2007) Pathophysiology of diabetic macular edema. Dev Ophthalmol 39: 1–12PubMedCrossRefGoogle Scholar
  17. Klettner A, Roider J (2008) Comparison if Bevacizumab, Ranibizumab and Pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 49: 4523–4527PubMedCrossRefGoogle Scholar
  18. Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK, Olsen BR (2005) Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol 167: 1451–1459PubMedCrossRefGoogle Scholar
  19. Massin P, Bandello F, Garweg JG, Hansen LL, Harding SP, Larsen M, Mitchell P, Sharp D, Wolf-Schnurbusch UE, Gekkieva M, Weichselberger A, Wolf S (2010) Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-months randomized controlled double-masked multicenter phase II study. Diabetes Care 33: 2399–2405PubMedCrossRefGoogle Scholar
  20. Mitchell P, Korobelnik JF, Lanzetta P, Holz FG, Prünte C, Schmidt-Erfurth U, Tano Y, Wolf S (2010) Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trialsGoogle Scholar
  21. Nicholson BP, Schachat AP (2010) A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 248: 915–930PubMedCrossRefGoogle Scholar
  22. Nishijima K, Ng YS, Zhong L et al. (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. AJP 171: 53–67PubMedGoogle Scholar
  23. Peters S, Heiduschka P, Julien S, Ziemssen, F, Fietz H, Bartz-Schmidt KU, Schraermeyer U (2007) Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am J Ophthalmol 143: 995–1002PubMedCrossRefGoogle Scholar
  24. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82: 844–851PubMedGoogle Scholar
  25. Schmidt-Erfurth U (2010) Clinical safety of renibizumab in age-related macular degeneration. Expert Opin Drug Saf Evaluation 9: 149–165CrossRefGoogle Scholar
  26. Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2: 71–98PubMedCrossRefGoogle Scholar
  27. Spitzer MS, Yoeruck E, Sierra A, Wallenfels-Thilo B, Schraermeyer U, Spitzer B, Bartz-Schmidt K, Szurman P (2007) Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib (Macugen) and ranibizumab (Lucentis) on different ocular cells, Graefes Arch Clin Exp. Ophthalmol 245: 1937–1842Google Scholar
  28. Stefánsson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79: 435–440PubMedCrossRefGoogle Scholar
  29. Sugimato H, Hamamo Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278: 12605–12608CrossRefGoogle Scholar
  30. Wang X, Wang G, Wang Y (2009) Intravitreous vascular endothelial growth factor and hypoxia-inducible factor 1a in patients with proliferative diabetic retinopathy. Am J Ophthalmol 148: 883–889PubMedCrossRefGoogle Scholar
  31. Wang Y, Fei D, Vanderlaan M, Song A (2004) Biological activity of bevacizumab, a humanizied anti-VEGF antibody in vitro. Angiogenesis 7: 223–345CrossRefGoogle Scholar
  32. Wu L, Martinez-Castellanos MA, Quiroz-Mercado H, Arevalo JF, Berrocal MH, Farah ME, Maia M, Roca JA, Rodriguez FJ, Pan American Collaborative Retina Group (PACORES) (2008) Twelf-month safety of intravitreal injections of bevazizumab (Avastin); results of the Pan American Collaborative Retina Group (PACORES). Graefes Arch Clin Exp Ophthalmol 246: 81–87PubMedCrossRefGoogle Scholar
  33. Ziemssen F, Zhu Q, Peters S, Grisanti S, ELW ar dani M, Szurman P. Bartz-Schmidt KU, Tuebingen Bevacizumab Studygroup, Ziemssen T (2008) Intensified monitoring of circadian blood pressure and heart rate before and after intravitreous injection of bevacizumab: preliminary findings of a pilot study. Int Ophthalmol 29: 213–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2011

Authors and Affiliations

  1. 1.Klinik für AugenheilkundeKlinikum Chemnitz gGmbHChemnitz

Personalised recommendations