Advertisement

Study of Optimal Behavior in Complex Virtual Training Systems

  • Jose San Martin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6774)

Abstract

In previous works we have studied the behavior of simple training systems integrated by a haptic device basing on criteria derived from Manipulability concept. The study of complex systems needs to re-define the criteria of optimal design for these systems. It is necessary to analyze how the workspace of two different haptics, simultaneously on the same model, limits the movement of each other. Results of the new proposed measures are used on Insight ARTHRO VR training system. The Minimally Invasive Surgery (MIS) techniques use miniature cameras with microscopes, fiber-optic flashlights and high definition monitors. The camera and the instruments are inserted through small incisions on the skin called portals. The trainer uses two PHANToM OMNi haptic devices, one representing the camera and other the surgical instrumental.

Keywords

Haptics Workspace Interference Manipulability Optimal Designing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoshikawa, T.: Manipulability and redundancy control of robotic mechanisms. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1004–1009 (March 1985)Google Scholar
  2. 2.
    Agha, R., Muir, G.: Does laparoscopic surgery spell the end of the open surgeon? J. R. Soc. Med. 96, 544–546 (2003)CrossRefGoogle Scholar
  3. 3.
    Ahlberg, G., Heikkinen, T., Iselius, L., Leijonmarck, C.-E., Rutqvist, J., Arvidsson, D.: Does training in a virtual reality simulator improve surgical performance? Surg. Endosc. 16, 126–129 (2002)CrossRefGoogle Scholar
  4. 4.
    Moore, M.J., Bennett, C.L.: The Learning Curve for Laparoscopic Cholecystectomy. The American Journal of Surgery 170(1), 55–59(5) (1995)CrossRefGoogle Scholar
  5. 5.
    Yokokohji, Y., San Martin, J., Fujiwara, M.: Dynamic Manipulability of Multifingered Grasping. IEEE Transactions on Robotics 25(4), 947–954 (2009)CrossRefGoogle Scholar
  6. 6.
    Gallina, P., Rosati, G.: Manipulability of a planar wire driven haptic device. Mechanism and Machine Theory 37(2), 215–228 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cho, C., Kim, M., Song, J.: Direct Control of a Passive Haptic Based on Passive Force Manipulability Ellipsoid Analysis. International Journal of Control, Automation, and Systems 2(2), 238–246 (2004)Google Scholar
  8. 8.
    Murray, R.M., Li, Z., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC Press, Inc., Boca Raton (1994)zbMATHGoogle Scholar
  9. 9.
    Yamamoto, Y., Yun, X.: Unified analysis on mobility and manipulability of mobile manipulators. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation, Detroit, vol. 2, pp. 1200–1206 (1999)Google Scholar
  10. 10.
    Yokokohji, Y., Yoshikawa, T.: Guide of master arms considering operator dynamics. Journal of dynamic systems, measurement, and control 115(2A), 253–260 (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cavusoglu, M.C., Feygin, D., Tendick, F.: A Critical Study of the Mechanical and Electrical Properties of the PHANToM Haptic Interface and Improvements for High Performance Control. Teleoperators and Virtual Environments 11(6), 555–568 (2002)CrossRefGoogle Scholar
  12. 12.
    Weise, T.: Global Optimization Algorithms. Theory and Application. Online e-book under GNU Free Documentation License (2009), http://www.it-weise.de/projects/book.pdf
  13. 13.
    San Martin, J., Trivino, G.: Mechanical design of a minimal invasive surgery trainer using the manipulability as measure of optimization. In: Proc. IEEE Int. Conf. Mechatronics (ICM), Kumamoto, Japan, pp. 1–5 (May 2007)Google Scholar
  14. 14.
    Lee, S., Lee, J.M.: Task-oriented dual-arm manipulability and its application to configuration optimization. In: Proceedings of the 27th IEEE Conference on Decision and Control 1998, December 7-9, pp. 2253–2260 (1988)Google Scholar
  15. 15.
    Aragon, C.R., Johnson, D.S., McGeoch, L.A., Shevon, C.: Optimization by Simulated Annealing: An Experimental Evaluation Part II, Graph Coloring and Number Partitioning. In: Operations Research, vol. 39(3), pp. 378–406 (1991)Google Scholar
  16. 16.
    Phillips, B.B.: Arthroscopy of the upper extremity. In: Canale, S.T., Beatty, J.H. (eds.) Campbell’s Operative Orthopaedics, 11th edn., ch.49. Mosby Elsevier, Philadelphia (2007)Google Scholar
  17. 17.
    Snyder, S.J., Karzel, R.P., Pizzo, W.D., Ferkel, R.D., Friedman, M.J.: SLAP lesions of the shoulder. Arthroscopy: The Journal of Arthroscopic & Related Surgery 6(4), 274–279 (1990) ISSN 0749-8063CrossRefGoogle Scholar
  18. 18.
    Beasley Vidal, L.S., et al.: Shoulder injuries. In: McMahon, P.J. (ed.) Current Diagnosis and Treatment in Sports Medicine, pp. 118–145. McGraw-Hill, New York (2007)Google Scholar
  19. 19.
    Phillips, B.B.: Recurrent dislocations. In: Canale, S.T., Beatty, J.H. (eds.) Campbell’s Operative Orthopaedics, 11th edn., ch. 45. Mosby Elsevier, Philadelphia (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jose San Martin
    • 1
  1. 1.Universidad Rey Juan CarlosMadridSpain

Personalised recommendations