Comparison in Degree of the Motion Sickness Induced by a 3-D Movie on an LCD and an HMD

  • Hiroki Takada
  • Yasuyuki Matsuura
  • Masumi Takada
  • Masaru Miyao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6773)


Three-dimensional (3D) television sets are already on the market and are becoming increasingly popular among consumers. Watching stereoscopic 3D movies, though, can produce certain adverse affects such as asthenopia and motion sickness. Visually induced motion sickness (VIMS) is considered to be caused by an increase in visual-vestibular sensory conflict while viewing stereoscopic images. VIMS can be analyzed both psychologically and physiologically. According to our findings reported at the last HCI International conference, VIMS could be detected with the total locus length and sparse density, which were used as analytical indices of stabilograms. In the present study, we aim to analyze the severity of motion sickness induced by viewing conventional 3D movies on a liquid crystal display (LCD) compared to that induced by viewing these movies on a head-mounted display (HMD). We quantitatively measured the body sway in a resting state and during exposure to a conventional 3D movie on an LCD and HMD. Subjects maintained the Romberg posture during the recording of stabilograms at a sampling frequency of 20 Hz. The simulator sickness questionnaire (SSQ) was completed before and immediately after exposure. Statistical analyses were applied to the SSQ subscores and to the abovementioned indices (total locus length and sparse density) for the stabilograms. Friedman tests showed the main effects in the indices for the stabilograms. Multiple comparisons revealed that viewing the 3D movie on the HMD significantly affected the body sway, despite a large visual distance.


visually induced motion sickness stabilometry sparse density liquid crystal displays (LCDs) head-mounted displays (HMDs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Okawa, T., Tokita, T., Shibata, Y., Ogawa, T., Miyata, H.: Stabilometry - Significance of locus length per unit area (L/A) in patients with equilibrium disturbances. Equilibrium Res. 55(3), 283–293 (1995)CrossRefGoogle Scholar
  2. 2.
    Kaga, K., Memaino, K.: Structure of vertigo. Kanehara, Tokyo 23-26, 95–100 (1992)Google Scholar
  3. 3.
    Okawa, T., Tokita, T., Shibata, Y., Ogawa, T., Miyata, H.: Stabilometry - Significance of locus length per unit area (L/A). Equilibrium Res. 54(3), 296–306 (1996)CrossRefGoogle Scholar
  4. 4.
    Collins, J.J., De Luca, C.J.: Open-loop and closed-loop control of posture: A random-walk analysis of center of pressure trajectories. Exp. Brain Res. 95, 308–318 (1993)CrossRefGoogle Scholar
  5. 5.
    Emmerrik, R.E.A., Van Sprague, R.L., Newell, K.M.: Assessment of sway dynamics in tardive dyskinesia and developmental disability: Sway profile orientation and stereotypy. Moving Disorders 8, 305–314 (1993)CrossRefGoogle Scholar
  6. 6.
    Newell, K.M., Slobounov, S.M., Slobounova, E.S., Molenaar, P.C.: Stochastic processes in postural center-of-pressure profiles. Exp. Brain Res. 113, 158–164 (1997)CrossRefGoogle Scholar
  7. 7.
    Takada, H., Kitaoka, Y., Shimizu, Y.: Mathematical index and model in stabilometry. Forma 16(1), 17–46 (2001)zbMATHGoogle Scholar
  8. 8.
    Fujiwara, K., Toyama, H.: Analysis of dynamic balance and its training effect - Focusing on fall problem of elder persons. Bulletin of the Physical Fitness Research Institute 83, 123–134 (1993)Google Scholar
  9. 9.
    Stoffregen, T.A., Hettinger, L.J., Haas, M.W., Roe, M.M., Smart, L.J.: Postural instability and motion sickness in a fixed-base flight simulator. Human Factors 42, 458–469 (2000)CrossRefGoogle Scholar
  10. 10.
    Riccio, G.E., Stoffregen, T.A.: An ecological theory of motion sickness and postural instability. Ecological Physiology 3(3), 195–240 (1991)CrossRefGoogle Scholar
  11. 11.
    Oman, C.: A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngologica Supplement 392, 1–44 (1982)Google Scholar
  12. 12.
    Reason, J.: Motion sickness adaptation: A neural mismatch model. J. Royal Soc. Med. 71, 819–829 (1978)Google Scholar
  13. 13.
    Stoffregen, T.A., Smart, L.J., Bardy, B.J., Pagulayan, R.J.: Postural stabilization of looking. Journal of Experimental Psychology. Human Perception and Performance 25, 1641–1658 (1999)CrossRefGoogle Scholar
  14. 14.
    Takada, H., Fujikake, K., Miyao, M., Matsuura, Y.: Indices to detect visually induced motion sickness using stabilometry. In: Proc. VIMS 2007, pp. 178–183 (2007)Google Scholar
  15. 15.
    Hatada, T.: Nikkei electronics, vol. 444, pp. 205–223 (1988)Google Scholar
  16. 16.
    Yasui, R., Matsuda, I., Kakeya, H.: Combining volumetric edge display and multiview display for expression of natural 3D images. In: Proc. SPIE, vol. 6055, pp. 0Y1–0Y9 (2006)Google Scholar
  17. 17.
    Kakeya, H.: MOEVision: Simple multiview display with clear floating image. In: Proc. SPIE, vol. 6490, p. 64900J (2007)Google Scholar
  18. 18.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: A simulator sickness questionnaire (SSQ): A new method for quantifying simulator sickness. International J. Aviation Psychology 3, 203–220 (1993)CrossRefGoogle Scholar
  19. 19.
    Holomes, S.R., Griffin, M.J.: Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J. Psychophysiology 15, 35–42 (2001)CrossRefGoogle Scholar
  20. 20.
    Himi, N., Koga, T., Nakamura, E., Kobashi, M., Yamane, M., Tsujioka, K.: Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Autonomic Neuroscience. Basic and Clinical 116, 46–53 (2004)CrossRefGoogle Scholar
  21. 21.
    Yokota, Y., Aoki, M., Mizuta, K.: Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngologia 125, 280–285 (2005)CrossRefGoogle Scholar
  22. 22.
    Scibora, L.M., Villard, S., Bardy, B., Stoffregen, T.A.: Wider stance reduces body sway and motion sickness. In: Proc. VIMS 2007, pp. 18–23 (2007)Google Scholar
  23. 23.
    Fujikake, K., Miyao, M., Watanabe, T., Hasegawa, S., Omori, M., Takada, H.: Evaluation of body sway and the relevant dynamics while viewing a three-dimensional movie on a head-mounted display by using stabilograms. In: Shumaker, R. (ed.) VMR 2009. LNCS, vol. 5622, pp. 41–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Suzuki, J., Matsunaga, T., Tokumatsu, K., Taguchi, K., Watanabe, Y.: Q&A and a manual in stabilometry. Equilibrium Res. 55(1), 64–77 (1996)CrossRefGoogle Scholar
  25. 25.
    Takada, H., Kitaoka, Y., Ichikawa, S., Miyao, M.: Physical meaning on geometrical index for stabilometry. Equilibrium Res. 62(3), 168–180 (2003)CrossRefGoogle Scholar
  26. 26.
    Wayland, R., Bromley, D., Pickett, D., Passamante, A.: Recognizing determinism in a time series. Phys. Rev. Lett. 70, 530–582 (1993)CrossRefzbMATHGoogle Scholar
  27. 27.
    Takada, H., Morimoto, T., Tsunashima, H., Yamazaki, T., Hoshina, H., Miyao, M.: Applications of Double-Wayland algorithm to detect anomalous signals. FORMA 21(2), 159–167 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Matsumoto, T., Tokunaga, R., Miyano, T., Tokuda, I.: Chaos and time series, Baihukan, Tokyo, pp. 49–64 (2002) (in Japanese)Google Scholar
  29. 29.
    Takada, H., Shimizu, Y., Hoshina, H., Shiozawa, Y.: Wayland tests for differenced time series could evaluate degrees of visible determinism. Bulletin of Society for Science on Form 17(3), 301–310 (2005)Google Scholar
  30. 30.
    Goldie, P.A., Bach, T.M., Evans, O.M.: Force platform measures for evaluating postural control: Reliability and validity. Arch. Phys. Med. Rehabil. 70, 510–517 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hiroki Takada
    • 1
    • 2
  • Yasuyuki Matsuura
    • 3
  • Masumi Takada
    • 2
  • Masaru Miyao
    • 3
  1. 1.Graduate School of EngineeringUniversity of FukuiFukuiJapan
  2. 2.Aichi Medical UniversityNagakuteJapan
  3. 3.Nagoya UniversityNagoyaJapan

Personalised recommendations