Towards Noninvasive Brain-Computer Interfaces during Standing for VR Interactions

  • Hideaki Touyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6773)


In this study, we propose a portable Brain-Computer Interface (BCI) aiming to realize a novel interaction with VR objects during standing. The ElectroEncephaloGram (EEG) was recorded under two experimental conditions: I) the subject was during sitting at rest and II) during simulated walking conditions in indoor environment. In both conditions, the Steady-State Visual Evoked Potential (SSVEP) was successfully detected by using computer generated visual stimuli. This result suggested that the EEG signals with portable BCI systems would provide a useful interface in performing VR interactions during standing in indoor environment such as immersive virtual space.


Brain-Computer Interface (BCI) Electroencephalogram (EEG) Steady-State Visual Evoked Potential (SSVEP) standing immersive virtual environment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Bayliss, J.D.: The use of the evoked potentials P3 Component for Control in a virtual apartment. IEEE Transaction on Neural Syatems and Rehabilitation Engineering 11(2) (2003)Google Scholar
  3. 3.
    Pfurtscheller, G., Leeb, R., Keinrath, C., Friedman, D., Neuper, C., Guger, C., Slater, M.: Walking from thought. Brain Research 1071, 145–152 (2006)CrossRefGoogle Scholar
  4. 4.
    Fujisawa, J., Touyama, H., Hirose, M.: EEG-based navigation of immersing virtual environments using common spatial patterns. In: Proc. of IEEE Virtual Reality Conference (2008) (to appear)Google Scholar
  5. 5.
    Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-Computer Interfaces Based on the Steady-State Visual-Evoked Response. IEEE Transactions on Rehabilitation Engineering 8(2), 211–214 (2000)CrossRefGoogle Scholar
  6. 6.
    Cheng, M., Gao, X., Gao, S., Xu, D.: Design and Implementation of a Brain-Computer Interface With High Transfer Rates. IEEE Transactions on Biomedical Engineering 49(10), 1181–1186 (2002)CrossRefGoogle Scholar
  7. 7.
    Trejo, L.J., Rosipal, R., Matthews, B.: Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans. Neural. Syst. Rehabil. Eng. 14(2), 225–229 (2006)CrossRefGoogle Scholar
  8. 8.
    Touyama, H., Hirose, M.: Steady-State VEPs in CAVE for Walking Around the Virtual World. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 715–717. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroenceph. Clin. Neurophysiol. 10, 370–375 (1958)CrossRefGoogle Scholar
  10. 10.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In: Proc. ACM SIGGRAPH 1993, pp. 135–142 (1993)Google Scholar
  11. 11.
    Lotte, F., Fujisawa, J., Touyama, H., Ito, R., Hirose, M., Lécuyer, A.: Towards Ambulatory Brain-Computer Interfaces: A Pilot Study with P300 Signals. In: 5th Advances in Computer Entertainment Technology Conference (ACE), pp. 336–339 (2009)Google Scholar
  12. 12.
    Maeda, K., Touyama, H.: in preparation (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hideaki Touyama
    • 1
  1. 1.Toyama Prefectural UniversityToyamaJapan

Personalised recommendations