lMAR: Highly Parallel Architecture for Markerless Augmented Reality in Aircraft Maintenance

  • Andrea Caponio
  • Mauricio Hincapié
  • Eduardo González Mendivil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6773)


A novel architecture for real time performance marker-less augmented reality is introduced. The proposed framework consists of several steps: at first the image taken from a video feed is analyzed and corner points are extracted, labeled, filtered and tracked along subsequent pictures. Then an object recognition algorithm is executed and objects in the scene are recognized. Eventually, position and pose of the objects are given. Processing steps only rely on state of the art image processing algorithms and on smart analysis of their output. To guarantee real time performances, use of modern highly parallel graphic processing unit is anticipated and the architecture is designed to exploit heavy parallelization.


Augmented Reality Parallel Computing CUDA Image Processing Object Recognition Machine Vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    NVIDIA CUDA Compute Unified Device Architecture - Programming Guide (2010),
  2. 2.
    Bay, H., Esse, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: 9th European Conference on Computer Vision (May 2006)Google Scholar
  3. 3.
    Haritos, T., Macchiarella, N.: A mobile application of augmented reality for aerospace maintenance training. In: The 24th Digital Avionics Systems Conference, DASC 2005 (2005)Google Scholar
  4. 4.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004); ISBN: 0521540518CrossRefzbMATHGoogle Scholar
  5. 5.
    Henderson, S., Feiner, S.: Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In: 8th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2009, pp. 135–144 (2009)Google Scholar
  6. 6.
    Kim, S., Dey, A.K.: Ar interfacing with prototype 3d applications based on user-centered interactivity. Comput. Aided Des. 42, 373–386 (2010)CrossRefGoogle Scholar
  7. 7.
    Lee, T., Hollerer, T.: Multithreaded hybrid feature tracking for markerless augmented reality. IEEE Transactions on Visualization and Computer Graphics 15(3), 355–368 (2009)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision (1999)Google Scholar
  9. 9.
    Oxford Visual Geometry Research Group: Oxford affine covariant regions dataset,
  10. 10.
    Paloc, C., Carrasco, E., Macia, I., Gomez, R., Barandiaran, I., Jimenez, J., Rueda, O., Ortiz de Urbina, J., Valdivieso, A., Sakas, G.: Computer-aided surgery based on auto-stereoscopic augmented reality. In: Proceedings of Eighth International Conference on Information Visualisation, IV 2004, pp. 189–193 (2004)Google Scholar
  11. 11.
    Uva, A.E., Cristiano, S., Fiorentino, M., Monno, G.: Distributed design review using tangible augmented technical drawings. Comput. Aided Des. 42, 364–372 (2010)CrossRefGoogle Scholar
  12. 12.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008),
  13. 13.
    Vlahakis, V., Ioannidis, M., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker, D., Gleue, T., Daehne, P., Almeida, L.: Archeoguide: an augmented reality guide for archaeological sites. IEEE Computer Graphics and Applications 22(5), 52–60 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrea Caponio
    • 1
  • Mauricio Hincapié
    • 1
  • Eduardo González Mendivil
    • 1
  1. 1.Instituto Tecnológico y de Estudios Superiores de MonterreyMonterreyMexico

Personalised recommendations