Intercepting Virtual Ball in Immersive Virtual Environment

  • Massimiliano Valente
  • Davide Sobrero
  • Andrea Brogni
  • Darwin Caldwell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6773)


Catching a flying ball is a difficult task that requires sensory systems to calculate the precise trajectory of the ball to predict its movement, and the motor systems to drive the hand in the right place at the right time.

In this paper we have analyzed the human performance in an intercepting task performed in an immersive virtual environment and the possible improvement of the performance by adding some feedback.

Virtual balls were launched from a distance of 11 m with 12 trajectories. The volunteers was equipped only with shutter glasses and one maker on backhand to avoid any constriction of natural movements. We ran the experiment in a natural scene, either without feedback or with acoustic feedback to report a corrects intercept. Analysis of performance shows a significant increment of successful trials in feedback condition. Experiment results are better with respect to similar experiment described in literature, but performances are still lower to results in real world.


Virtual Reality Ecological Validity Interceptive Action 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armbrster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception in virtual reality: Distance estimations in peri- and extrapersonal space. Cyber Psychology & Behavior 11(1), 9–15 (2008)CrossRefGoogle Scholar
  2. 2.
    Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., Craig, C.: Using virtual reality to analyze sports performance. IEEE Computer Graphics and Applications 30(2), 14–21 (2010)Google Scholar
  3. 3.
    Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B., Delamarche, P.: Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neuroscience Letters 372(1-2), 119–122 (2004)CrossRefGoogle Scholar
  4. 4.
    Bockemhl, T., Troje, N.F., Drr, V.: Inter-joint coupling and joint angle synergies of human catching movements. Human Movement Science 29(1), 73–93 (2010)CrossRefGoogle Scholar
  5. 5.
    Chapman, S.: Catching a baseball. American Journal of Physics 36(10), 868–870 (1968)CrossRefGoogle Scholar
  6. 6.
    Craig, C.M., Goulon, C., Berton, E., Rao, G., Fernandez, L., Bootsma, R.J.: Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention, Perception, & Psychophysics 71(3), 515–522 (2009)CrossRefGoogle Scholar
  7. 7.
    Fink, P.W., Foo, P.S., Warren, W.H.: Catching fly balls in virtual reality: A critical test of the outfielder problem. Journal of Vision 9(13), 1–8 (2009)CrossRefGoogle Scholar
  8. 8.
    Mazyn, L.I.N., Lenoir, M., Montagne, G., Savelsbergh, G.J.P.: The contribution of stereo vision to one-handed catching. Experimental Brain Research 157(3), 383–390 (2004)CrossRefGoogle Scholar
  9. 9.
    McLeod, P., Dienes, Z.: Do fielders know where to go to catch the ball or only how to get there? Journal of Experimental Psychology: Human Perception and Performance 22(3), 531–543 (1996)Google Scholar
  10. 10.
    Murgia, A., Sharkey, P.M.: Estimation of distances in virtual environments using size constancy. The International Journal of Virtual Reality 8(1), 67–74 (2009)Google Scholar
  11. 11.
    Oldfield, R.C.: The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)CrossRefGoogle Scholar
  12. 12.
    Peper, L., Bootsma, R.J., Mestre, D.R., Bakker, F.C.: Catching balls: How to get the hand to the right place at the right time. Journal of Experimental Psychology: Human Perception and Performance 20(3), 591–612 (1994)Google Scholar
  13. 13.
    Tijtgat, P., Bennett, S., Savelsbergh, G., De Clercq, D., Lenoir, M.: Advance knowledge effects on kinematics of one-handed catching. Experimental Brain Research 201(4), 875–884 (2010), 10.1007/s00221-009-2102-0CrossRefGoogle Scholar
  14. 14.
    Wann, J.P., Rushton, S., Mon-Williams, M.: Natural problems for stereoscopic depth perception in virtual environments. Vision Research 35(19), 2731–2736 (1995)CrossRefGoogle Scholar
  15. 15.
    Zaal, F.T.J.M., Michaels, C.F.: The information for catching fly balls: Judging and intercepting virtual balls in a cave. Journal of Experimental Psychology: Human Perception and Performance 29(3), 537–555 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Massimiliano Valente
    • 1
  • Davide Sobrero
    • 1
  • Andrea Brogni
    • 1
  • Darwin Caldwell
    • 1
  1. 1.Advanced Robotics Dept.Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations