Skip to main content

Algebraic Independence and Blackbox Identity Testing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6756))

Abstract

Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. The transcendence degree (trdeg) of a set \(\{f_1, \dotsc, f_m\} \subset \mathbb{F}[x_1, \dotsc, x_n]\) of polynomials is the maximal size r of an algebraically independent subset. In this paper we design blackbox and efficient linear maps ϕ that reduce the number of variables from n to r but maintain trdeg{ϕ(f i )} i  = r, assuming f i ’s sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing:

  1. 1

    Given a circuit C and sparse subcircuits f 1,…,f m of trdeg r such that D: = C(f 1,…,f m ) has polynomial degree, we can test blackbox D for zeroness in poly(size(D))r time.

  2. 2

    Define a ΣΠΣΠ δ (k,s,n) circuit C to be of the form ∑  i = 1 k ∏  j = 1 s f i,j , where f i,j are sparse n-variate polynomials of degree at most δ. For k = 2, we give a \(poly(\delta sn)^{\delta^2}\) time blackbox identity test.

  3. 3

    For a general depth-4 circuit we define a notion of rank. Assuming there is a rank bound R for minimal simple ΣΠΣΠ δ (k,s,n) identities, we give a \(poly(\delta snR)^{Rk\delta^2}\) time blackbox identity test for ΣΠΣΠ δ (k,s,n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits.

The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.

The first two authors are grateful to the Bonn International Graduate School in Mathematics for research funding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M., Lenstra, H.W.: Finding irreducible polynomials over finite fields. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 350–355 (1986)

    Google Scholar 

  2. Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Agrawal, M.: Determinant versus permanent. In: Proceedings of the 25th International Congress of Mathematicians (ICM), vol. 3, pp. 985–997 (2006)

    Google Scholar 

  4. Agrawal, M., Biswas, S.: Primality and identity testing via Chinese remaindering. Journal of the ACM 50(4), 429–443 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: Proceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS), pp. 67–75 (2008)

    Google Scholar 

  6. Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing polynomial identity testing for multilinear constant-read formulae. In: Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC (2011)

    Google Scholar 

  7. Beecken, M., Mittmann, J., Saxena, N.: Algebraic Independence and Blackbox Identity Testing. Tech. Rep. TR11-022, Electronic Colloquium on Computational Complexity, ECCC (2011)

    Google Scholar 

  8. Chen, Z., Kao, M.: Reducing randomness via irrational numbers. SIAM J. on Computing 29(4), 1247–1256 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Information Processing Letters 7(4), 193–195 (1978)

    Article  MATH  Google Scholar 

  10. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polynomial sources. Computational Complexity 18(1), 1–58 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dvir, Z., Gutfreund, D., Rothblum, G., Vadhan, S.: On approximating the entropy of polynomial mappings. In: Proceedings of the 2nd Symposium on Innovations in Computer Science, ICS (2011)

    Google Scholar 

  12. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)

    MATH  Google Scholar 

  13. Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute (extended abstract). In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 262–272 (1980)

    Google Scholar 

  14. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1), 1–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kalorkoti, K.: A lower bound for the formula size of rational functions. SIAM J. Comp. 14(3), 678–687 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karnin, Z., Shpilka, A.: Deterministic black box polynomial identity testing of depth-3 arithmetic circuits with bounded top fan-in. In: Proceedings of the 23rd Annual Conference on Computational Complexity (CCC), pp. 280–291 (2008)

    Google Scholar 

  17. Kayal, N.: The Complexity of the Annihilating Polynomial. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), pp. 184–193 (2009)

    Google Scholar 

  18. Kemper, G.: A Course in Commutative Algebra. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  19. Lewin, D., Vadhan, S.: Checking polynomial identities over any field: Towards a derandomization? In: Proceedings of the 30th Annual Symposium on the Theory of Computing (STOC), pp. 428–437 (1998)

    Google Scholar 

  20. Lovász, L.: On determinants, matchings and random algorithms. In: Fundamentals of Computation Theory (FCT), pp. 565–574 (1979)

    Google Scholar 

  21. Lovász, L.: Singular spaces of matrices and their applications in combinatorics. Bol. Soc. Braz. Mat. 20, 87–99 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Perron, O.: Algebra I (Die Grundlagen). Berlin (1927)

    Google Scholar 

  23. Płoski, A.: Algebraic Dependence of Polynomials After O. Perron and Some Applications. In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry, pp. 167–173. IOS Press, Amsterdam (2005)

    Google Scholar 

  24. Saraf, S., Volkovich, I.: Black-box identity testing of depth-4 multilinear circuits. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC (2011)

    Google Scholar 

  25. Saxena, N., Seshadhri, C.: From Sylvester-Gallai configurations to rank bounds: Improved black-box identity test for depth-3 circuits. In: Proceedings of the 51st Annual Symposium on Foundations of Computer Science (FOCS), pp. 21–29 (2010)

    Google Scholar 

  26. Saxena, N., Seshadhri, C.: An Almost Optimal Rank Bound for Depth-3 Identities. SIAM J. Comp. 40(1), 200–224 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Saxena, N., Seshadhri, C.: Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn’t matter. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC (2011)

    Google Scholar 

  28. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27(4), 701–717 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shpilka, A., Yehudayoff, A.: Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3-4), 207–388 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beecken, M., Mittmann, J., Saxena, N. (2011). Algebraic Independence and Blackbox Identity Testing. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22012-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22011-1

  • Online ISBN: 978-3-642-22012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics