Skip to main content

Vertex Cover in Graphs with Locally Few Colors

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

In [13], Erdős et al. defined the local chromatic number of a graph as the minimum number of colors that must appear within distance 1 of a vertex. For any Δ ≥ 2, there are graphs with arbitrarily large chromatic number that can be colored so that (i) no vertex neighborhood contains more than Δ different colors (bounded local colorability), and (ii) adjacent vertices from two color classes induce a complete bipartite graph (biclique coloring).

We investigate the weighted vertex cover problem in graphs when a locally bounded coloring is given. This generalizes the vertex cover problem in bounded degree graphs to a class of graphs with arbitrarily large chromatic number. Assuming the Unique Game Conjecture, we provide a tight characterization. We prove that it is UGC-hard to improve the approximation ratio of 2 − 2/(Δ + 1) if the given local coloring is not a biclique coloring. A matching upper bound is also provided. Vice versa, when properties (i) and (ii) hold, we present a randomized algorithm with approximation ratio of \(2- \Omega(1)\frac{\ln \ln \Delta}{\ln \Delta}\). This matches known inapproximability results for the special case of bounded degree graphs.

Moreover, we show that the obtained result finds a natural application in a classical scheduling problem, namely the precedence constrained single machine scheduling problem to minimize the total weighted completion time. In a series of recent papers it was established that this scheduling problem is a special case of the minimum weighted vertex cover in graphs G P of incomparable pairs defined in the dimension theory of partial orders. We show that G P satisfies properties (i) and (ii) where Δ − 1 is the maximum number of predecessors (or successors) of each job.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambühl, C., Mastrolilli, M.: Single machine precedence constrained scheduling is a vertex cover problem. Algorithmica 53(4), 488–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: Scheduling with precedence constraints of low fractional dimension. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 130–144. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Ambühl, C., Mastrolilli, M., Svensson, O.: Approximating precedence-constrained single machine scheduling by coloring. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 15–26. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for sparsest cut, optimal linear arrangement, and precedence constrained scheduling. In: FOCS, pp. 329–337 (2007)

    Google Scholar 

  5. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent set in bounded degree graphs. In: IEEE Conference on Computational Complexity, pp. 74–80 (2009)

    Google Scholar 

  6. Bansal, N., Khot, S.: Optimal Long-Code test with one free bit. In: Foundations of Computer Science (FOCS), pp. 453–462 (2009)

    Google Scholar 

  7. Brightwell, G.R., Scheinerman, E.R.: Fractional dimension of partial orders. Order 9, 139–158 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Applied Mathematics 98(1-2), 29–38 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Operations Research Letters 25, 199–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints. Mathematics of Operations Research 30(4), 1005–1021 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals of Mathematics 162(1), 439–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dushnik, B., Miller, E.: Partially ordered sets. American Journal of Mathematics 63, 600–610 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdös, P., Füredi, Z., Hajnal, A., Komjáth, P., Rödl, V., Seress, Á.: Coloring graphs with locally few colors. Discrete Mathematics 59(1-2), 21–34 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felsner, Trotter: On the fractional dimension of partially ordered sets. DMATH: Discrete Mathematics 136, 101–117 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Felsner, S., Trotter, W.T.: Dimension, graph and hypergraph coloring. Order 17(2), 167–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, R., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, vol. 5, pp. 287–326. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  17. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line algorithms. Mathematics of Operations Research 22, 513–544 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Transactions on Algorithms 5(4) (2009)

    Google Scholar 

  22. Karger, D.R., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45(2), 246–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775 (2002)

    Google Scholar 

  24. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kleinberg, J.M., Goemans, M.X.: The lovász theta function and a semidefinite programming relaxation of vertex cover. SIAM J. Discrete Math. 11(2), 196–204 (1998)

    Article  MATH  Google Scholar 

  26. Körner, J., Pilotto, C., Simonyi, G.: Local chromatic number and Sperner capacity. Journal on Combinatorial Theory, Series B 95(1), 101–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of Discrete Mathematics 2, 75–90 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of scheduling under precedence constraints. Operations Research 26, 22–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows and a precedence constrained single machine scheduling problem. Operations Research 51(6), 981–992 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Potts, C.N.: An algorithm for the single machine sequencing problem with precedence constraints. Mathematical Programming Study 13, 78–87 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schulz, A.S.: Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  33. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuhn, F., Mastrolilli, M. (2011). Vertex Cover in Graphs with Locally Few Colors. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics