Skip to main content

Robust Independence Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Abstract

An independence system \(\mathcal{F}\) is one of the most fundamental combinatorial concepts, which includes a variety of objects in graphs and hypergraphs such as matchings, stable sets, and matroids. We discuss the robustness for independence systems, which is a natural generalization of the greedy property of matroids. For a real number α > 0, a set \(X\in\mathcal{F}\) is said to be α-robust if for any k, it includes an α-approximation of the maximum k-independent set, where a set Y in \(\mathcal{F}\) is called k-independent if the size |Y| is at most k. In this paper, we show that every independence system has a \(1/\sqrt{\mu(\mathcal{F})}\)-robust independent set, where \(\mu(\mathcal{F})\) denotes the exchangeability of \(\mathcal{F}\). Our result contains a classical result for matroids and the ones of Hassin and Rubinstein,[12] for matchings and Fujita, Kobayashi, and Makino,[7] for matroid 2-intersections, and provides better bounds for the robustness for many independence systems such as b-matchings, hypergraph matchings, matroid p-intersections, and unions of vertex disjoint paths. Furthermore, we provide bounds of the robustness for nonlinear weight functions such as submodular and convex quadratic functions. We also extend our results to independence systems in the integral lattice with separable concave weight functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a submodular set function subject to a matroid constraint. SIAM Journal on Computing (to appear)

    Google Scholar 

  2. Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for hypergraph matching. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1500–1511 (2010)

    Google Scholar 

  3. Chandra, B., Halldórsson, M.: Greedy local improvement and weighted set packing approximation. Journal of Algorithms 39, 223–240 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming 1, 127–136 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions ii. Mathematical Programming Study 8, 73–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frank, A.: How to make a digraph strongly connected. Combinatorica 1, 145–153 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujita, R., Kobayashi, Y., Makino, K.: Robust matchings and matroid intersections. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 123–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Fukunaga, T., Halldórsson, M., Nagamochi, H.: Robust cost colorings. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1204–1212 (2008)

    Google Scholar 

  9. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Proceedings of the 15th ACM Symposium on Theory of Computing (STOC 1983), pp. 448–456 (1983)

    Google Scholar 

  10. Goemans, M.X., Harvey, N.J.A., Iwata, S., Mirrokni, V.: Approximating submodular functions everywhere. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 535–544 (2009)

    Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  12. Hassin, R., Rubinstein, S.: Robust matchings. SIAM Journal on Discrete Mathematics 15, 530–537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hassin, R., Segev, D.: Robust subgraphs for trees and paths. ACM Transaction on Algorithms 2, 263–281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hásted, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  15. Jenkyns, T.A.: The efficacy of the “greedy” algorithm. In: Proceedings of the 7th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)

    Google Scholar 

  16. Jenkyns, T.A.: The greedy traveling salesman’s problem. Networks 9, 363–373 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jungnickel, D.: Graphs, Networks, and Algorithms, 2nd edn. Algorithms and Computation in Mathematics, vol. 5. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  18. Kakimura, N., Makino, K.: Robust independence systems, Mathematical Engineering Technical Reports METR 2011-14, University of Tokyo (2011)

    Google Scholar 

  19. Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Annals of Discrete Mathematics 2, 65–74 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  21. Lin, G., Nagarajan, C., Rajarama, R., Williamson, D.: A general approach for incremental approximation and hierarchical clustering. SIAM Journal on Computing 39, 3633–3669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lucchesi, C.L.: A Minimax Equality for Directed Graphs, PhD thesis, University of Waterloo (1976)

    Google Scholar 

  23. Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 528–539. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on Computing 32, 816–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rado, R.: Note on independence relations. Proceedings of the London Mathematical Society 7, 300–320 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schrijver, A.: Combinatorial Optimization — Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kakimura, N., Makino, K. (2011). Robust Independence Systems. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics