Skip to main content

Settling the Complexity of Local Max-Cut (Almost) Completely

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Abstract

We consider the problem of finding a local optimum for the Max-Cut problem with FLIP-neighborhood, in which exactly one node changes the partition. Schäffer and Yannakakis (SICOMP, 1991) showed \(\mathcal{PLS}\)-completeness of this problem on graphs with unbounded degree. On the other side, Poljak (SICOMP, 1995) showed that in cubic graphs every FLIP local search takes O(n 2) steps, where n is the number of nodes. Due to the huge gap between degree three and unbounded degree, Ackermann, Röglin, and Vöcking (JACM, 2008) asked for the smallest d such that on graphs with maximum degree d the local Max-Cut problem with FLIP-neighborhood is \(\mathcal{PLS}\)-complete. In this paper, we prove that the computation of a local optimum on graphs with maximum degree five is \(\mathcal{PLS}\)-complete. Thus, we solve the problem posed by Ackermann et al. almost completely by showing that d is either four or five (unless \(\mathcal{PLS}\)\(\mathcal{P}\)).

On the other side, we also prove that on graphs with degree O(logn) every FLIP local search has probably polynomial smoothed complexity. Roughly speaking, for any instance, in which the edge weights are perturbated by a (Gaussian) random noise with variance σ 2, every FLIP local search terminates in time polynomial in n and σ − 1, with probability 1 − n − Ω(1). Putting both results together, we may conclude that although local Max-Cut is likely to be hard on graphs with bounded degree, it can be solved in polynomial time for slightly perturbated instances with high probability.

Partially supported by the German Research Foundation (DFG) Priority Programme 1307 “Algorithm Engineering”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, D., Manthey, B., Röglin, H.: k-Means has polynomial smoothed complexity. In: FOCS 2009, pp. 405–414 (2009)

    Google Scholar 

  2. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. Journal of the ACM (JACM) 55(6), art. 25 (2008)

    Google Scholar 

  3. Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm for linear programming. In: SODA, pp. 905–914 (2002)

    Google Scholar 

  4. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete optimization. In: STOC, pp. 343–352 (2004)

    Google Scholar 

  5. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. In: SODA, pp. 1295–1304 (2006)

    Google Scholar 

  6. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash Equilibria. In: STOC, pp. 604–612 (2004)

    Google Scholar 

  7. Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) Algorithmic Game Theory. LNCS, vol. 6386, pp. 174–185. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability, a guide to the theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37(1), 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krentel, M.W.: Structure in locally optimal solutions. In: FOCS, pp. 216–221 (1989)

    Google Scholar 

  11. Kelner, J.A., Nikolova, E.: On the hardness and smoothed complexity of quasi-concave minimization. In: FOCS, pp. 472–482 (2007)

    Google Scholar 

  12. Loebl, M.: Efficient maximal cubic graph cuts. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 351–362. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  13. Monien, B., Dumrauf, D., Tscheuschner, T.: Local search: Simple, successful, but sometimes sluggish. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 1–17. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Monien, B., Tscheuschner, T.: On the power of nodes of degree four in the local max-cut problem. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 264–275. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Poljak, S.: Integer linear programs and local search for max-cut. SIAM Journal on Computing 21(3), 450–465 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Poljak, S., Tuza, Z.: Maximum cuts and largest bipartite subgraphs. Combinatorial Optimization, pp. 181–244. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  17. Röglin, H.: Personal communication (2010)

    Google Scholar 

  18. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Math. Program. 110(1), 21–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Spielmann, D., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM (JACM) 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spielmann, D., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

    Article  Google Scholar 

  21. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM Journal on Computing 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vershynin, R.: Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method. In: FOCS, pp. 133–142 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elsässer, R., Tscheuschner, T. (2011). Settling the Complexity of Local Max-Cut (Almost) Completely. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics