Skip to main content

Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

A (1 + ε)–approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time.

There are strong distance-oracle constructions known for planar graphs (Thorup, JACM’04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC’06). However, these require \(\Omega(\epsilon^{-1} n \lg n)\) space for n–node graphs.

In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of ε and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is \(O(n \lg^2 n)\). However, our constructions have slower query times. For planar graphs, the query time is \(O(\epsilon^{-2} \lg^2 n)\).

For all our linear-space results, we can in fact ensure, for any δ > 0, that the space required is only 1 + δ times the space required just to represent the graph itself.

An extended version can be found online [KKS11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: Dynamizing static algorithms, with applications to dynamic trees and history independence. In: Proceedings of the Fifteenth ACM-SIAM Symposium on Discrete Algorithms, pp. 531–540 (2004)

    Google Scholar 

  2. Abraham, I., Gavoille, C.: Object location using path separators. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 188–197 (2006); Details in LaBRI Research Report RR-1394-06

    Google Scholar 

  3. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Transactions on Algorithms 1(2), 243–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartal, Y., Gottlieb, L.-A., Kopelowitz, T., Lewenstein, M., Roditty, L.: Fast, precise and dynamic distance queries. CoRR, abs/1008.1480 (2010) (to appear in SODA 2011)

    Google Scholar 

  5. Cabello, S.: Many distances in planar graphs. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1213–1220 (2006); a preprint of the journal version is available in the University of Ljubljana preprint series, vol. 47, p. 1089 (2009)

    Google Scholar 

  6. Cabello, S., Chambers, E.W.: Multiple source shortest paths in a genus g graph. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, pp. 89–97 (2007)

    Google Scholar 

  7. Chen, D.Z., Xu, J.: Shortest path queries in planar graphs. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 469–478 (2000)

    Google Scholar 

  8. Djidjev, H., Pantziou, G.E., Zaroliagis, C.D.: Improved algorithms for dynamic shortest paths. Algorithmica 28(4), 367–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eppstein, D.: Dynamic generators of topologically embedded graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 599–608 (2003)

    Google Scholar 

  10. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. Journal of Computer and System Sciences 72(5), 868–889 (2006), announced at FOCS 2001

    Article  MathSciNet  MATH  Google Scholar 

  11. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing 16(6), 1004–1022 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frederickson, G.N.: A data structure for dynamically maintaining rooted trees. Journal of Algorithms 24, 37–65 (1997), announced at SODA 1993

    Article  MathSciNet  MATH  Google Scholar 

  13. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences 55(1), 3–23 (1997), announced at STOC 1994

    Article  MathSciNet  MATH  Google Scholar 

  14. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006), announced at SOCG 2005

    Article  MathSciNet  MATH  Google Scholar 

  15. Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths in planar graphs. ACM Transactions on Algorithms 2(3), 335–363 (2006), announced at STOC 2003

    Article  MathSciNet  MATH  Google Scholar 

  16. Kawarabayashi, K., Klein, P.N., Sommer, C.: Linear-space approximate distance oracles for planar, bounded-genus, and minor-free graphs. CoRR, abs/1104.5214 (2011)

    Google Scholar 

  17. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 146–155 (2005)

    Google Scholar 

  18. Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with negative lengths: A linear-space O(nlog2n)-time algorithm. ACM Transactions on Algorithms 6(2) (2010), announced at SODA 2009

    Google Scholar 

  19. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mozes, S., Sommer, C.: Exact distance oracles for planar graphs. CoRR, abs/1011.5549 (2010)

    Google Scholar 

  21. Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in O(nlog2 n/loglogn) time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Muller, L.F., Zachariasen, M.: Fast and compact oracles for approximate distances in planar graphs. In: Proceedings of the 15th Annual European Conference on Algorithms, pp. 657–668 (2007)

    Google Scholar 

  23. Nussbaum, Y.: Improved distance queries in planar graphs. CoRR, abs/1012.2825 (2010)

    Google Scholar 

  24. Patrascu, M., Roditty, L.: Distance oracles beyond the Thorup–Zwick bound. In: 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS (2010)

    Google Scholar 

  25. Slivkins, A.: Distance estimation and object location via rings of neighbors. Distributed Computing 19(4), 313–333 (2007), announced at PODC 2005

    Article  MATH  Google Scholar 

  26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983), announced at STOC 1981

    Article  MathSciNet  MATH  Google Scholar 

  27. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 703–712 (2009)

    Google Scholar 

  28. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 281–290 (2004)

    Google Scholar 

  29. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46(3), 362–394 (1999), announced at FOCS 1997

    Article  MathSciNet  MATH  Google Scholar 

  30. Thorup, M.: Floats, integers, and single source shortest paths. Journal of Algorithms 35(2), 189–201 (2000), announced at STACS 1998

    Article  MathSciNet  MATH  Google Scholar 

  31. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004), announced at FOCS 2001

    Article  MathSciNet  MATH  Google Scholar 

  32. Tarjan, R.E., Werneck, R.F.F.: Self-adjusting top trees. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 813–822 (2005)

    Google Scholar 

  33. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005), announced at STOC 2001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawarabayashi, Ki., Klein, P.N., Sommer, C. (2011). Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics