Skip to main content

Sequence Automata for Researching Consensus Levels

  • Conference paper
  • 1785 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6682))

Abstract

Having a group of ranking lists (ordered sequences) we can use different theories to research a scale of consistency according to the assessments contained in it. The agreement of ordered (queue) objects can be estimated as the maximal length of preference subsequences i.e. a maximal set of objects with the same queue of dominance relation. It is not important that among the chosen objects others exist but it is important that the i-th object is before j-th objects (has greater validation). The proposed sequence automata can be use to find different kinds of sequence agreements or disagreement among a sequenced group represented by for example by a ranking list. An exploitation ranking list has an essential advantage over other methods of object judgment (assessments) because different criteria or their sets are reduced only to positions on lists. In such a situation the problem of assessing the scale of consistency (agreement among authors or algorithms of ranking lists) remains. A unified-form of complex criteria presentation helps us to elaborate the tools for consistency estimation. We expect that sequence automata will resolve this and similar problems connected with sequence analysis. Our proposition is the tool supporting multi-agents system in areas of negotiation, partner recognition, creation hierarchy of criteria, planning strategy and finding hidden, imperceptible nuances (details), having dependence (or preference) character. It can be also use for coding and decoding information by sequence interlacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R., Magnanti, T., Orlin, J.B.: Network Flows. Prencice-Hall, Englewood Clifs (1993)

    MATH  Google Scholar 

  2. Baker, K.R., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constrains, TR 8028/0, Econometric Institute, Erasmus University, Rotterdam (1980)

    Google Scholar 

  3. Baker, K.R., Schrage, L.E.: Finding an optimal sequence by dynamic programming: An extension to precedence-related tasks. Oper. Res. 26, 111–120 (1978)

    Article  MATH  Google Scholar 

  4. Ballas, E.: Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Oper. Res. 17, 941–957 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennington, G.E., Mc Ginnis, L.F.: A critique of project planning with constrained resources. Elmaghraby, 1-28 (1973)

    Google Scholar 

  6. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constrains: Classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheriton, D., Tarian, R.E.: Finding minimum spanning trees. SIAM J. Comput. 5, 724–742 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coffman, E.G., Graham, R.L.: Optimal scheduling for processor system. Acta Inform. 1, 200–213 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Denardo, E.V., Fox, B.L.: Shortest - route methods: 1. Reaching, purring and buckeds. Oper. Res. 27, 215–248 (1979)

    Google Scholar 

  10. Derigs, U., Heske, A.: A computational study on some methods for solving the cardinality matching problem. Angew. Inform Jg 22, 249–254 (1980)

    Google Scholar 

  11. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 83–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabow, H.: An efficient implementation of Edmond’s algorithm for maximum matching on graphs. J. AMC 23, 221–234 (1975)

    MathSciNet  Google Scholar 

  13. Hu, T.C.: Parallel sequencing and assembly line problems. Oper. Res. 9, 841–848 (1961)

    Article  MathSciNet  Google Scholar 

  14. Jackson, J.R.: An extension of Johnson’s results on job lot scheduling. Naval Res. Logist. Quart. 3, 201–203 (1956)

    Article  Google Scholar 

  15. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness, RR 43, Management Science Research Project. University of California, Los Angeles (1955)

    Google Scholar 

  16. Keeney, R., Raiffa, H.: Decision with Multiple Objectives: Preferences and value Tradeoffs. John Wiley and Sons, NewYork (1976)

    MATH  Google Scholar 

  17. Kerschenbaum, A., Van Slyke, R.: Computing minimum spanning trees efficiently w. In: Proc. 25-th, Ann. Conf. of the ACM, pp. 518–527 (1972)

    Google Scholar 

  18. Lawler, E.L., Lenstra, J.K., Rinooy Kan, A.G.H., Shmoys, D.: The Traveling Salesmam Problem. Wiley, New York (1985)

    Google Scholar 

  19. McNaughton, R.: Scheduling with deadlines and loss functions. Management Sci. 6, 1–12 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Neuman von, J.: Theory of Self - Reproducing Automata. University of Illinois Press, US (1966)

    Google Scholar 

  21. Piech, H., Ptak, A.: Use of a fuzzy strategy to create the shortest Hamiltonian cycle. In: Intern.Conf. on Fuzzy Sets and Soft Comp. in Economics and Finance, pp. 299–307 (2004)

    Google Scholar 

  22. Piech, H.: Scheduling with applying rough sets theory. Czestochowa University of technology, Monographs 149 (2008)

    Google Scholar 

  23. Rinnoy Kan, A.H.G., Lageweg, B.J., Lenstra, J.K.: Minimizing total cost in one machine scheduling. Oper. Res. 23, 908–927 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robertson, T., Wright, F.T., Dykstra, R.L.: Order restricted Statistical Inference. John Wiley and Sons, NewYork (1998)

    MATH  Google Scholar 

  25. Roy, B.: Multicriteria Methodology for decision Aiding. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  26. Rosenschein, J., Zlotkin, G.: Task oriented domains: Designing Convention for Automated Negotiation among Computers, pp. 29–52. MIT Press, Cambridge (1994)

    Google Scholar 

  27. Schelling, T.: The strategy of Conflict, pp. 54–80. Oxford University Press, New York (1963)

    Google Scholar 

  28. Subrahmanian, V.S., Bonatti, P., Dix, J.: Heterogeneous Agent Systems. MIT Press, Cambridge (2000)

    Google Scholar 

  29. Tu, M.T., Griffel, F., Merz, M., Lamersdorf, W.: A Plug-in Architecture Providing Dynamic Negotiation Capabilities for Mobile Agents. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp. 222–236. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  30. Vasudevan, S., Kurose, J., Towsley, D.: Design and Analysis of a Leader Election. In: 12-th IEEE International Conference of Network Protocols, ICNP, Los Alamitos, pp. 350–360 (2004)

    Google Scholar 

  31. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley and Sons, Chichester (2002)

    Google Scholar 

  32. Zeleznikow, J., Bellucci, E.: Family - Winner: Integrating game theory and heuristic to provide negotiation support. In: 16-th International Conference on Legal Knowledge Based System, Amsterdam, pp. 21–30 (2003)

    Google Scholar 

  33. Ziegler, C.N., Lausen, G.: Propagation models for trust and distrust in social networks. Information System Frontiers 7, 337–358 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piech, H. (2011). Sequence Automata for Researching Consensus Levels. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics