Skip to main content

The Unitary Fermi Gas: From Monte Carlo to Density Functionals

  • Chapter
  • First Online:
The BCS-BEC Crossover and the Unitary Fermi Gas

Part of the book series: Lecture Notes in Physics ((LNP,volume 836))

Abstract

In this chapter, we describe three related studies of the universal physics of two-component unitary Fermi gases with resonant short-ranged interactions. First we discuss an ab initio auxiliary field quantum Monte Carlo technique for calculating thermodynamic properties of the unitary gas from first principles. We then describe in detail a Density Functional Theory (DFT) fit to these thermodynamic properties: the Superfluid Local Density Approximation (SLDA) and its Asymmetric (ASLDA) generalization. We present several applications, including vortex structure, trapped systems, and a supersolid Larkin–Ovchinnikov (FFLO/LOFF) state. Finally, we discuss the time-dependent extension to the density functional (TDDFT) which can describe quantum dynamics in these systems, including non-adiabatic evolution, superfluid to normal transitions and other modes not accessible in traditional frameworks such as a Landau–Ginzburg, Gross–Pitaevskii, or quantum hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have changed notations slightly from [124] using \(\tilde{C}(n_{a},n_{b}) = \alpha_{+}C(n_{a},n_{b})\) which simplifies the equations because, in the limit of infinite cutoff, \(\Uplambda\) is independent of any densities and functional parameters.

  2. 2.

    There is a small correction due to the residual density dependence of \(\Uplambda\) at finite cutoff but in practice this is insignificant.

  3. 3.

    In our previous calculations [124, 125], we used a more complicated parametrization: the present form G(p) is just as good and much simpler and we advocate its use instead.

  4. 4.

    G(p) is related to the other dimensionless functions f(x) and g(x) discussed in the literature as:

    $$ G(p) = \left(\frac{1+p} {2}g(p)\right)^{5/3} = \left(\frac{1+p} {2}\right)^{5/3} f(p),\qquad x = \frac{n_{b}} {n_{a}} \in [0,\infty]. $$

    The function \(g(x) = g[p(x)]\) introduced in [101] has the necessary and sufficient requirement of convexity to satisfy the second law of thermodynamics; and the function \(f(x) = f[p(x)]\) was introduced in [126] and has been tabulated using Monte-Carlo methods [64].

  5. 5.

    We have performed a simple two-parameter non-linear least-squares fit which has a reduced \(\chi_{\hbox {red}}^2 = 1.1,\) indicating a very good fit.

  6. 6.

    JaguarPF is a Cray XT5 supercomputer with 224,256 processing cores, see http://ww.nccs.gov.

  7. 7.

    Formally, this constraint can be implemented using a Lagrange multiplier, but it is much easier to see the results by letting \(\rho = 1/2 + {\mathbf{x}} - {\mathbf{C}}{\mathbf{x}}^T{\mathbf{C}}\) where x is unconstrained, and then performing the variation with respect to x.

  8. 8.

    Suppose \({\fancyscript{H}}_{s}\psi = \epsilon\psi.\) Applying (9.127), using \({\fancyscript{C}}^2 = 1,\) and taking the transpose imply that \(\psi^T{\fancyscript{C}}^{T}{\fancyscript{H}}_{s} = -\epsilon\psi^{T}{\fancyscript{C}}^{T}.\) Since left and right eigenvalues are the same, this implies that there is some other state such that \({\fancyscript{H}}_{s}\tilde{\psi} = -\epsilon\tilde{\psi}.\) For Hermitian Hamiltonians, \({\fancyscript{H}}_{s} = {\fancyscript{H}}_{s}^{\dagger},\) hence, the other state can be directly constructed as \(\tilde{\psi} = {\fancyscript{C}}\psi^{\ast}.\)

References

  1. Eagles, D.M.: Phys. Rev. 186(2), 456 (1969). doi:10.1103/PhysRev.186.456

    Google Scholar 

  2. Leggett, A.J.: In: Pekalski, A., Przystawa, J. (eds.) Modern Trends in the Theory of Condensed Matter, Lecture Notes in Physics. Proceedings of the XVI Karpacz Winter School of Theoretical Physics, pp. 13–27. Springer, Berlin (1980)

    Google Scholar 

  3. Nozières, P., Schmitt-Rink, S. J.: Low Temp. Phys. 59, 195 (1985). doi:10.1007/BF00683774

  4. Sá de Melo, C.A.R., Randeria, M., Engelbrecht, J.R.: Phys. Rev. Lett. 71(19), 3202 (1993)

    Google Scholar 

  5. Engelbrecht, J.R., Randeria, M., Sáde Melo, C.A.R.: Phys. Rev. B 55(22), 15153 (1997)

    Google Scholar 

  6. Randeria, M.: In: Griffin, A., Snoke, D.W., Stringari, S. (eds.) Bose–Einstein Condensation, pp. 355–392. Cambridge University Press, Cambridge (1995). Chap. 15

    Google Scholar 

  7. Haussmann, R.: Zeitschrift fur Physik B Condens. Matter 91, 291 (1993)

    Google Scholar 

  8. Haussmann, R.: Phys. Rev. B 49(18), 12975 (1994)

    Google Scholar 

  9. Pistolesi, F., Strinati, G.C.: Phys. Rev. B 49(9), 6356 (1994)

    Google Scholar 

  10. Pistolesi, F., Strinati, G.C.: Phys. Rev. B 53(22), 15168 (1996)

    Google Scholar 

  11. Pieri, P., Strinati, G.C.: Phys. Rev. B 61(22), 15370 (2000)

    Google Scholar 

  12. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1975)

    Google Scholar 

  13. Gorkov, L., Melik-Barkhudarov, T.: Sov. Phys.–JETP 13(5), 1018 (1961)

    Google Scholar 

  14. Petrov, D.S., Salomon, C., Shlyapnikov, G.V.: Phys. Rev. Lett. 93(9), 090404 (2004)

    Google Scholar 

  15. Bulgac, A., Bedaque, P.F., Fonseca, A.C.: arXiv:cond-mat/0306302v2 (2003)

    Google Scholar 

  16. Brodsky, I.V., Kagan, M.Y., Klaptsov, A.V., Combescot, R., Leyronas, X.: Phys. Rev. A 73(3), 032724 (2006)

    Google Scholar 

  17. Levinsen, J., Gurarie, V.: Phys. Rev. A 73(5), 053607 (2006)

    Google Scholar 

  18. Carlson, J., Chang, S.Y., Pandharipande, V.R., Schmidt, K.E.: Phys. Rev. Lett. 91, 050401 (2003)

    Google Scholar 

  19. Bulgac, A., Drut, J.E., Magierski, P.: Phys. Rev. Lett. 96(9), 090404 (2006)

    Google Scholar 

  20. Bertsch, G.F.: The Many-Body Challenge Problem (MBX) (1999). See also [22,23]

    Google Scholar 

  21. Ho, T.L.: Phys. Rev. Lett. 92(9), 090402 (2004)

    Google Scholar 

  22. Baker, G.A.: Phys. Rev. C 60(5), 054311 (1999)

    Google Scholar 

  23. Baker, G.A.: Int. J. Mod. Phys. B 15(10–11), 1314 (2001)

    Google Scholar 

  24. Heiselberg, H.: Phys. Rev. A 63(4), 043606 (2001)

    Google Scholar 

  25. O’Hara, K.M., Hemmer, S.L., Gehm, M.E., Granade, S.R., Thomas, J.E.: Science 298, 2179 (2002)

    Google Scholar 

  26. Giorgini, S., Pitaevskii, L.P., Stringari, S., Rev. Mod. Phys. 80, 1215 (2008)

    Google Scholar 

  27. Bloch, I., Dalibard, J., Zwerger, W.: Rev. Mod. Phys. 80(3), 885 (2008). doi:10.1103/RevModPhys.80.885

  28. Ketterle, W., Zwierlein, M.W.: In: Inguscio, M. et al. [29], pp. 95–287. doi:10.3254/978-1-58603-846-5-9

  29. Inguscio, M., Ketterle, W., Salomon, C. (eds.): Ultra-Cold Fermi Gases, International School of Physics “Enrico Fermi”, vol. 64, IOS Press, Amsterdam (2007)

    Google Scholar 

  30. Luo, L., Thomas, J.E.: J. Low Temp. Phys. 154(1), 1 (2009). doi:10.1007/s10909-008-9850-2

  31. Grimm, R., in Inguscio et al.: [29], pp. 413–462. doi:10.3254/978-1-58603-846-5-413

  32. Nishida, Y., Son, D.T.: Phys. Rev. Lett. 97(5), 050403 (2006)

    Google Scholar 

  33. Son, D.T.: Phys. Rev. D 78(4), 046003 (2008)

    Google Scholar 

  34. Stoof, H.T.C., Koelman, J.M.V.A., Verhaar, B.J.: Phys. Rev. B 38(7), 4688 (1988)

    Google Scholar 

  35. Tiesinga, E., Kuppens, S.J.M., Verhaar, B.J., Stoof, H.T.C.: Phys. Rev. A 43(9), 5188 (1991)

    Google Scholar 

  36. Tiesinga, E., Moerdijk, A.J., Verhaar, B.J., Stoof, H.T.C.: Phys. Rev. A 46(3), R1167 (1992)

    Google Scholar 

  37. Tiesinga, E., Verhaar, B.J., Stoof, H.T.C.: Phys. Rev. A 47(5), 4114 (1993)

    Google Scholar 

  38. Moerdijk, A.J., Verhaar, B.J., Axelsson, A.: Phys. Rev. A 51(6), 4852 (1995)

    Google Scholar 

  39. Köhler, T., Góral, K., Julienne, P.S.: Rev. Mod. Phys. 78(4), 1311 (2006)

    Google Scholar 

  40. Duine, R.A., Stoof, H.T.C.: Phys. Rep. 396, 115 (2004)

    Google Scholar 

  41. Timmermans, E., Tommasini, P., Hussein, M., Kerman, A.: Phys. Rep. 315(1–3), 199 (1999)

    Google Scholar 

  42. Forbert, H.A., Chin, S.A.: Int. J. Mod. Phys. B 15, 1752 (2001)

    Google Scholar 

  43. Suzuki, M.: Phys. Lett. A 146(6), 319 (1990)

    Google Scholar 

  44. Yoshida, H.: Phys. Lett. A 150(5–7), 262 (1990)

    Google Scholar 

  45. Creutz, M., Gocksch, A.: Phys. Rev. Lett. 63(1), 9 (1989)

    Google Scholar 

  46. Bulgac, A., Drut, J.E., Magierski, P.: Phys. Rev. A 78(2), 023625 (2008)

    Google Scholar 

  47. Negele, J.W., Orland, H.: Quantum Many-particle Systems. Westview Press, Reading, MA (1998)

    Google Scholar 

  48. Hirsch, J.E.: Phys. Rev. B 28(7), 4059 (1983)

    Google Scholar 

  49. Koonin, S.E., Dean, D.J., Langanke, K.: Phys. Rep. 278(1), 1 (1997)

    Google Scholar 

  50. Alhassid, Y.: Int. J. Mod. Phys. B 15, 1447 (2001)

    Google Scholar 

  51. Wlazłowski, G., Magierski, P.: Int. J. Mod. Phys. E 18, 919 (2009)

    Google Scholar 

  52. Bulgac, A., Drut, J.E., Magierski, P.: Int. J. Mod. Phys. B 20, 5165 (2006)

    Google Scholar 

  53. Barber, M.N.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, Phase Transitions and Critical Phenomena, vol. 8, pp. 146. Academic Press, New York (1983)

    Google Scholar 

  54. Tan, S.: Annals of Physics 323(12), 2971 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Braaten, E., Platter, L.: Phys. Rev. Lett. 100(20), 205301 (2008)

    Google Scholar 

  56. Chang, S.Y., Pandharipande, V.R., Carlson, J., Schmidt, K.E.: Phys. Rev. A 70(4), 043602 (2004)

    Google Scholar 

  57. Astrakharchik, G.E., Boronat, J., Casulleras, J., Giorgini, S.: Phys. Rev. Lett. 93, 200404 (2004)

    Google Scholar 

  58. Carlson, J., Reddy, S.: Phys. Rev. Lett. 95, 060401 (2005)

    Google Scholar 

  59. Gezerlis, A., Carlson, J.: Phys. Rev. C 77(3), 032801 (2008)

    Google Scholar 

  60. Bulgac, A., Yu, Y.: Phys. Rev. Lett. 91(19), 190404 (2003)

    Google Scholar 

  61. Magierski, P., Wlazłowski, G., Bulgac, A., Drut, J.E.: Phys. Rev. Lett. 103(21), 210403 (2009)

    Google Scholar 

  62. Heiselberg, H., Pethick, C.J., Smith, H., Viverit, L.: Phys. Rev. Lett. 85(12), 2418 (2000)

    Google Scholar 

  63. Carlson, J., Morales, J., Pandharipande, V.R., Ravenhall, D.G.: Phys. Rev. C 68(2), 025802 (2003)

    Google Scholar 

  64. Lobo, C., Recati, A., Giorgini, S., Stringari, S.: Phys. Rev. Lett. 97(20), 200403 (2006)

    Article  ADS  Google Scholar 

  65. Leggett, A.J.: J. Phys. Colloques 41, C7–19 (1980). doi:10.1051/jphyscol:1980704

    Google Scholar 

  66. Perali, A., Pieri, P., Pisani, L., Strinati, G.C.: Phys. Rev. Lett. 92(22):220404 (2004)

    Google Scholar 

  67. Carr, L.D., Shlyapnikov, G.V., Castin, Y.: Phys. Rev. Lett. 92(15), 150404 (2004)

    Google Scholar 

  68. Luo, L., Clancy, B., Joseph, J., Kinast, J., Thomas, J.E.: Phys. Rev. Lett. 98(8), 080402 (2007)

    Google Scholar 

  69. Bulgac, A., Drut, J.E., Magierski, P.: Phys. Rev. Lett. 99, 120401 (2007)

    Article  ADS  Google Scholar 

  70. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, San Fransisco (1971)

    Google Scholar 

  71. Jaynes, E.T.: In: Levine, R.D., Tribus, M. (eds.) Maximum Entropy Formalism, vol. 8, pp. 15–118. MIT Press, Cambridge (1979)

    Google Scholar 

  72. Silver, R.N., Sivia, D.S., Gubernatis, J.E.: Phys. Rev. B 41(4), 2380 (1990)

    Google Scholar 

  73. Silver, R.N., Gubernatis, J.E., Sivia, D.S., Jarrell, M.: Phys. Rev. Lett. 65(4), 496 (1990)

    Google Scholar 

  74. White, S.R.: Phys. Rev. B 44(9), 4670 (1991)

    Google Scholar 

  75. Bertero, M., Mol, C.D., Pike, E.R.: Inverse Probl. 1(4), 301 (1985)

    Article  ADS  MATH  Google Scholar 

  76. Bertero, M., Mol, C.D., Pike, E.R.: Inverse Probl. 4(3), 573 (1988)

    Article  ADS  MATH  Google Scholar 

  77. Creffield, C.E., Klepfish, E.G., Pike, E.R., Sarkar, S.: Phys. Rev. Lett. 75(3), 517 (1995)

    Google Scholar 

  78. de Villiers, G.D., McNally, B., Pike, E.R.: Inverse Probl. 15(2), 615 (1999)

    Article  ADS  MATH  Google Scholar 

  79. Magierski, P., Wlazłowski, G.: in preparation.

    Google Scholar 

  80. Burovski, E., Prokof’ev, N., Svistunov, B., Troyer, M.: Phys. Rev. Lett. 96(16), 160402; erratum ibid. 97(23), 239902 (2006)

    Google Scholar 

  81. Burovski, E., Prokof’ev, N., Svistunov, B., Troyer, M.: New J. Phys. 8(8), 153 (2006)

    Article  ADS  Google Scholar 

  82. Burovski, E., Kozik, E., Prokof’ev, N., Svistunov, B., Troyer, M.: Phys. Rev. Lett. 101(9), 090402 (2008). doi:10.1103/PhysRevLett.101.090402

    Google Scholar 

  83. Stajic, J., Milstein, J.N., Chen, Q., Chiofalo, M.L., Holland, M.J., Levin, K.: Phys. Rev. A 69(6), 063610 (2004)

    Google Scholar 

  84. Chen, Q., Stajic, J., Tan, S., Levin, K.: Phys. Rep. 412(1), 1 (2005)

    Google Scholar 

  85. Levin, K., Chen, Q.: In: Inguscio, M. et al.: [29], pp. 751–778

    Google Scholar 

  86. He, Y., Chien, C.C., Chen, Q., Levin, K.: Phys. Rev. B 76(22), 224516 (2007)

    Google Scholar 

  87. Chin, C., Bartenstein, M., Altmeyer, A., Riedl, S., Jochim, S., Denschlag, J.H., Grimm, R.: Science 305(5687), 1128 (2004)

    Google Scholar 

  88. Greiner, M., Regal, C.A., Jin, D.S.: Phys. Rev. Lett. 94(7), 070403 (2005)

    Google Scholar 

  89. Schunck, C.H., Shin, Y., Schirotzek, A., Zwierlein, M.W., Ketterle, W.: Science 316(5826), 867 (2007)

    Google Scholar 

  90. Kinnunen, J., Rodríguez, M., Törmä, P.: Science 305, 1131 (2004)

    Google Scholar 

  91. He, Y., Chen, Q., Levin, K.: Phys. Rev. A 72(1), 011602 (2005)

    Google Scholar 

  92. Yu, Z., Baym, G.: Phys. Rev. A 73(6), 063601 (2006)

    Google Scholar 

  93. Baym, G., Pethick, C.J., Yu, Z., Zwierlein, M.W.: Phys. Rev. Lett. 99(19), 190407 (2007)

    Google Scholar 

  94. Punk, M., Zwerger, W.: Phys. Rev. Lett. 99(17), 170404 (2007)

    Google Scholar 

  95. Perali, A., Pieri, P., Strinati, G.C.: Phys. Rev. Lett. 100(1), 010402 (2008)

    Google Scholar 

  96. Gaebler, J.P., Stewart, J.T., Drake, T.E., Jin, D.S., Perali, A., Pieri, P., Strinati, G.C.: Nat. Phys. 6(8), 569 (2010)

    Google Scholar 

  97. Stewart, J.T., Gaebler, J.P., Jin, D.S.: Nature 454, 744 (2008)

    Google Scholar 

  98. Kuhnle, E.D., Dyke, P., Mark, M., Hannaford, P., Vale C.J.: Bragg spectroscopy of the BEC–BCS crossover in lithium-6. Poster at BEC 2009 (2009)

    Google Scholar 

  99. Magierski, V, Wlazłowski, G., Bulgac, A.: work in progress

    Google Scholar 

  100. Thomas, J.E., Kinast, J., Turlapov, A.: Phys. Rev. Lett. 95(12), 120402 (2005)

    Google Scholar 

  101. Bulgac, A., Forbes, M.M.: Phys. Rev. A 75(3), 031605(R) (2007)

    Google Scholar 

  102. Bartenstein, M., Altmeyer, A., Riedl, S., Geursen, R., Jochim, S., Chin, C., Denschlag, J.H., Grimm, R., Simoni, A., Tiesinga, E., Williams, C.J., Julienne, P.S.: Phys. Rev. Lett. 94(10), 103201 (2005)

    Google Scholar 

  103. Kinast, J., Turlapov, A., Thomas, J.E., Chen, Q., Stajic, J., Levin, K.: Science 307(5713), 1296 (2005)

    Google Scholar 

  104. Nascimbène, S., Navon, N., Jiang, K.J., Chevy, F. Salomon, C.: Nature 463, 1057 (2010)

    Google Scholar 

  105. Horikoshi, M., Nakajima, S., Ueda, M., Mukaiyama, T.: Science 327(5964), 442 (2010)

    Google Scholar 

  106. Nascimbène, S., Navon, N., Chevy, F., Salomon, C.: New J. Phys. 12, 103026 (2010). arXiv:1006.4052, doi:10.1088/1367-2630/12/10/103026

    Google Scholar 

  107. Hohenberg, P., Kohn, W.: Phys. Rev. 136(3B), B864 (1964)

    Google Scholar 

  108. Kohn, W., Sham, L.J.: Phys. Rev. 140(4A), A1133 (1965)

    Google Scholar 

  109. Dreizler, R.M., Gross, E.K.: Density Functional Theory: An Approach to the Quantum Many–Body Problem. Springer, Berlin (1990)

    MATH  Google Scholar 

  110. Parr, R.G., Weitao, Y.: Density-Functional Theory of Atoms and Molecules. No. 16 in International Series of Monographs on Chemistry. Oxford University Press, New York (1989)

    Google Scholar 

  111. Drut, J.E., Furnstahl, R.J., Platter, L.: Prog. Part. Nucl. Phys. 64(1), 120 (2010). doi:10.1016/j.ppnp.2009.09.001

  112. Chevy, F.: Phys. Rev. A 74(6), 063628 (2006)

    Google Scholar 

  113. Kohn, W.: Rev. Mod. Phys. 71(5), 1253 (1999)

    Google Scholar 

  114. Papenbrock, T.: Phys. Rev. A 72(4), 041603 (2005)

    Google Scholar 

  115. Rupak, G., Schaefer, T.: Nucl. Phys. A 816(1–4), 52 (2009)

    Google Scholar 

  116. Bulgac, A., Yu, Y.: Phys. Rev. Lett. 88(4), 042504 (2002)

    Google Scholar 

  117. de Gennes, P.G.: Superconductivity of Metals and Alloys. Benjamin, New York (1966)

    MATH  Google Scholar 

  118. Papenbrock, T., Bertsch, G.F.: Phys. Rev. C 59, 2052 (1999)

    Google Scholar 

  119. Tan, S.: Ann.Phys. 323(12), 2952 (2008)

    Article  ADS  MATH  Google Scholar 

  120. Blatt, J.M., Weisskopf, V.F.: Theoretical Nuclear Physics, pp. 74–76. Wiley, New York (1952)

    MATH  Google Scholar 

  121. Huang, K.: Statistical Mechanics, pp. 230–238. Wiley, New York (1987)

    MATH  Google Scholar 

  122. Huang, K., Yang, C.N.: Phys. Rev. 105(3), 767 (1957)

    Google Scholar 

  123. Lee, T.D., Yang, C.N.: Phys. Rev. 105(3), 1119 (1957)

    Google Scholar 

  124. Bulgac, A., Forbes, M.M.: arXiv:0808.1436 (2008)

    Google Scholar 

  125. A. Bulgac, M.M. Forbes, Phys. Rev. Lett. 101(21), 215301 (2008). doi:10.1103/PhysRevLett.101.215301

    Google Scholar 

  126. Cohen, T.D.: Phys. Rev. Lett. 95, 120403 (2005)

    Article  ADS  Google Scholar 

  127. Bulgac, A.: Phys. Rev. A 76, 040502 (2007)

    Google Scholar 

  128. Carlson, J., Reddy, S.: Phys. Rev. Lett. 100(15), 150403 (2008)

    Google Scholar 

  129. Bhattacharyya, A., Furnstahl, R.J.: Phys. Lett. B 607(3-4), 259 (2005)

    Google Scholar 

  130. Bhattacharyya, A., Furnstahl, R.J.: Nucl. Phys. A 747(2-4), 268 (2005)

    Google Scholar 

  131. Combescot, R., Giraud, S.: Phys. Rev. Lett. 101(5), 050404 (2008)

    Google Scholar 

  132. Pilati, S., Giorgini, S.: Phys. Rev. Lett. 100(3), 030401 (2008)

    Article  ADS  Google Scholar 

  133. Shin, Y.: Phys. Rev. A 77(4), 041603 (2008)

    Google Scholar 

  134. Nascimbène, S., Navon, N., Jiang, K.J., Tarruell, L., Teichmann, M., McKeever, J., Chevy, F., Salomon, C.: Phys. Rev. Lett. 103(17), 170402 (2009)

    Google Scholar 

  135. Chang, S.Y., Bertsch, G.F.: Phys. Rev. A 76(2), 021603 (2007)

    Google Scholar 

  136. Blume, D., von Stecher, J., Greene C.H.: Phys. Rev. Lett. 99(23), 233201 (2007)

    Google Scholar 

  137. Blume, D.: Phys. Rev. A 78(1), 013635 (2008)

    Google Scholar 

  138. Forbes, M.M., Gandolfi, S., Gezerlis, A.: Phys. Rev. Lett. 106(23), 235303 (2011)

    Google Scholar 

  139. Baksmaty, L.O., Lu, H., Bolech, C.J., Pu, H.: Phys. Rev. A 83(2), 023604 (2010)

    Google Scholar 

  140. Pei, J.C., Dukelsky, J., Nazarewicz, W.: Phys. Rev. A 82(2), 021603 (2010). doi:10.1103/PhysRevA.82.021603

    Google Scholar 

  141. Belyaev, S.T., Smirnov, A.V., Tolokonnikov, S.V., Fayans, S.A.: Sov. J. Nucl. Phys. 45, 783 (1987)

    Google Scholar 

  142. Fayans, S.A., Tolokonnikov, S.V., Trykov, E.L., Zawischa, D. Nucl. Phys. A 676(1–4), 49 (2000)

    Google Scholar 

  143. Zwierlein, M.W., Abo-Shaeer, J.R., Schirotzek, A., Schunck, C.H., Ketterle, W.: Nature 435, 1047 (2005)

    Google Scholar 

  144. Combescot, R., Recati, A., Lobo, C., Chevy, F.: Phys. Rev. Lett. 98(18), 180402 (2007)

    Article  ADS  Google Scholar 

  145. Yoshida, N., Yip, S.K.: Phys. Rev. A 75(6), 063601 (2007)

    Article  ADS  Google Scholar 

  146. Fulde, P., Ferrell, R.A.: Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  147. Larkin, A.I., Ovchinnikov, Y.N.: Sov. Phys. JETP 20, 762 (1965)

    MathSciNet  Google Scholar 

  148. Larkin, A.I., Ovchinnikov, Y.N.: Zh. Eksper. Teoret. Fiz. 47, 1136 (1964)

    Google Scholar 

  149. Dewel, G., Borckmans, P., Walgraef, D.: J. Phys. C 12(13), L491 (1979)

    Article  ADS  Google Scholar 

  150. Radzihovsky, L., Vishwanath, A.: Phys. Rev. Lett. 103(1), 010404 (2009)

    Article  ADS  Google Scholar 

  151. Bowers, J.A., Rajagopal, K.: Phys. Rev. D 66, 065002 (2002)

    Article  ADS  Google Scholar 

  152. Son, D.T., Wingate, M.B.: Ann. Phys. 321, 197 (2006)

    Google Scholar 

  153. Engel, Y.M., Brink, D.M., Goeke, K., Krieger, S.J., Vautherin, D.: Nucl. Phys. A 249(2), 215 (1975)

    Article  ADS  Google Scholar 

  154. Dobaczewski, J., Dudek, J.: Phys. Rev. C 52(4), 1827 (1995)

    Google Scholar 

  155. Nesterenko, V.O., Kleinig, W., Kvasil, J., Vesely, P., Reinhard, P.: Int. J. Mod. Phys. E 17, 89 (2008)

    Google Scholar 

  156. Bender, M., Heenen, P.H., Reinhard, P.G.: Rev. Mod. Phys. 75(1), 121 (2003)

    Google Scholar 

  157. Rajagopal, A.K. Callaway, J.: Phys. Rev. B 7(5), 1912 (1973)

    Google Scholar 

  158. Peuckert, V.: J. Phys. C Solid State Phys. 11(24), 4945 (1978)

    Article  ADS  Google Scholar 

  159. Runge, E., Gross, E.K.U.: Phys. Rev. Lett. 52(12), 997 (1984)

    Google Scholar 

  160. http://www.tddft.org/

  161. Bulgac, A., Lewenkopf, C., Mickrjukov, V.: Phys. Rev. B 52(23), 16476 (1995)

    Google Scholar 

  162. Andreev, A.F., Bashkin, E.P.: Sov. Phys. JETP 42, 164 (1975)

    ADS  Google Scholar 

  163. Andreev, A.F., Bashkin, E.P.: Zh.Éksp. Teor. Fiz. 69, 319 (1975)

    Google Scholar 

  164. Bulgac, A., Yoon, S.: Phys. Rev. Lett. 102(8), 085302 (2009)

    Google Scholar 

  165. Volkov, A.F., Kogan, S.M.: Sov. Phys. JETP 38, 1018 (1974)

    ADS  Google Scholar 

  166. Volkov, A.F., Kogan, S.M.: Zh.Éksp. Teor. Fiz. 65, 2038 (1973)

    Google Scholar 

  167. Barankov, R.A., Levitov, L.S., Spivak, B.Z.: Phys. Rev. Lett. 93(16), 160401 (2004)

    Google Scholar 

  168. Barankov, R.A., Levitov, L.S.: Phys. Rev. Lett. 96(23), 230403 (2006)

    Google Scholar 

  169. Andreev, A.V., Gurarie, V., Radzihovsky, L.: Phys. Rev. Lett. 93(13), 130402 (2004)

    Google Scholar 

  170. Szymańska, M.H., Simons, B.D., Burnett, K.: Phys. Rev. Lett. 94(17), 170402 (2005)

    Google Scholar 

  171. Tomadin, A., Polini, M., Tosi, M.P., Fazio, R.: Phys. Rev. A 77(3), 033605 (2008)

    Google Scholar 

  172. Barankov, R.A., Levitov, L.S.: Phys. Rev. A 73(3), 033614 (2006)

    Google Scholar 

  173. Warner, G.L., Leggett, A.J.: Phys. Rev. B 71(13), 134514 (2005)

    Google Scholar 

  174. Yi, W., Duan, L.M.: Phys. Rev. A 73(1), 013609 (2006)

    Google Scholar 

  175. Nahum, A., Bettelheim, E.: Phys. Rev. B 78(18), 184510 (2008)

    Google Scholar 

  176. Teodorescu, R.: J. Phys. A 39(33), 10363 (2006)

    Google Scholar 

  177. Robertson, A., Jiang, L., Pu, H., Zhang, W., Ling, H.Y.: Phys. Rev. Lett. 99(25), 250404 (2007)

    Google Scholar 

  178. Yuzbashyan, E.A., Altshuler, B.L., Kuznetsov, V.B., Enolskii, V.Z.: J. Phys. A 38(36), 7831 (2005)

    Google Scholar 

  179. Dzero, M., Yuzbashyan, E.A., Altshuler, B.L., Coleman, P.: Phys. Rev. Lett. 99(16), 160402 (2007)

    Google Scholar 

  180. Yuzbashyan, E.A., Altshuler, B.L., Kuznetsov, V.B., Enolskii, V.Z.: Phys. Rev. B 72(22), 220503 (2005)

    Google Scholar 

  181. Yuzbashyan, E.A., Dzero, M.: Phys. Rev. Lett. 96(23), 230404 (2006)

    Google Scholar 

  182. Yuzbashyan, E.A.: Phys. Rev. B 78(18), 184507 (2008)

    Google Scholar 

  183. Yuzbashyan, E.A., Tsyplyatyev, O., Altshuler, B.L.: Phys. Rev. Lett. 96(9), 097005 (2006)

    Google Scholar 

  184. Dzero, M., Yuzbashyan, E.A., Altshuler, B.L.: Europhys. Lett. 85, 20004 (2009)

    Google Scholar 

  185. Bulgac, A.: J. Phys. G 37(6), 064006 (2010)

    Article  ADS  Google Scholar 

  186. Babaev, E.: Phys. Rev. B 79(10), 104506 (2009)

    Google Scholar 

  187. Babaev, E.: Phys. Rev. Lett. 103(23), 231101 (2009)

    Google Scholar 

  188. Babaev, E., Jäykkä, J., Speight, M.: Phys. Rev. Lett. 103(23), 237002 (2009)

    Google Scholar 

  189. Rupak, G., Schäfer, T., Kryjevski, A.: Phys. Rev. A 75(2), 023606 (2007)

    Google Scholar 

  190. Khalatnikov, I.M.: An introduction to the theory of superfluidity. Advanced Book Program, Perseus Pub, Cambridge, Mass (2000)

    Google Scholar 

  191. Bulgac, A., Luo, Y.-L., Magierski, P., Roche, K.J., Yu, Y.: Science 332, 1288 (2011)

    Google Scholar 

  192. Tonini, G., Werner, F., Castin, Y.: Eur. Phys. J. D 39, 283 (2006)

    Google Scholar 

  193. Bulgac, A., Roche, K.J.: J. Phys. Conf. Ser. 125(1), 012064 (2008)

    Article  ADS  Google Scholar 

  194. Sensarma, R., Randeria, M., Ho, T.L.: Phys. Rev. Lett. 96(9), 090403 (2006)

    Google Scholar 

  195. Combescot, R., Kagan, M.Y., Stringari, S.: Phys. Rev. A 74(4), 042717 (2006)

    Google Scholar 

  196. Vinen, W.F., Donnelly, R.J.: Phys. Today 60(4), 43 (2007)

    Google Scholar 

  197. Vinen, W.F.: J. Low Temp. Phys. 145(1–4), 7 (2006). doi:10.1007/s10909-006-9240-6

  198. Tsubota, M.: J. Phys. Soc. Jpn. 77(11), 111006(1 (2008)

    Google Scholar 

  199. Bulgac, A., Forbes, M.M., Schwenk, A.: Phys. Rev. Lett. 97(2), 020402 (2006)

    Google Scholar 

  200. Bulgac, A., Yoon, S.: Phys. Rev. A 79(5), 053625 (2009). doi:10.1103/PhysRevA.79.053625

    Google Scholar 

  201. Baran, A., Bulgac, A., Forbes, M.M., Hagen, G., Nazarewicz, W., Schunck, N., Stoitsov, M.V.: Phys. Rev. C 78(1), 014318 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel Bulgac .

Editor information

Editors and Affiliations

Appendix

Appendix

9.1.1 Formal Description of the DFT

Here we present a somewhat formal derivation of the variational property of the Kohn-Sham equations. Consider a general free-energy functional of the following form

$$ F = E(n_{A},n_{B},\cdots) + T\hbox{Tr}\left({\rho}\ln{\rho}\right) $$
(9.113)

where

$$ \begin{aligned} n_{A} &= \hbox{Tr}\left({\rho} {A}^{T}\right), \\ n_{B} &= \hbox{Tr}\left({\rho} {B}^{T}\right), \\ &\vdots \end{aligned} $$

are the various densities, anomalous densities, etc. expressed linearly in terms of the one-body density matrix \({\rho}.\) By varying the functional with respect to the density matrix \({\rho}\) subject to the appropriate constraints on density matrix form (discussed in ‘Fermions’), one obtains a solution of the form

$$ {\rho} = f_{\beta}({\mathbf{H}}[{\rho}]) $$
(9.114)

where \(f_{\beta}(E)\) is the appropriate thermal distribution for the particles of interest, and \({\mathbf{H}}\) is a single-particle Hamiltonian that depends on \({\rho}\):

$$ {\mathbf{H}}[{\rho}] = \partial{E}{n_{A}}{\mathbf{A}} + \partial{E}{n_{B}}{\mathbf{B}} + \cdots. $$
(9.115)

The typical Kohn-Sham equations follow by diagonalizing the self-consistency condition (9.114) with a set of normalized Kohn-Sham eigenfunctions of definite energy:

$$ {\mathbf{H}}|{n}\rangle = E_{n}|{n}\rangle. $$
(9.116)

The density matrix is diagonal in this basis and expressed in terms of the appropriate distribution functions \(f_{\beta}(E)\):

$$ {\rho} = \sum_{n} f_{\beta}(E_{n}) |{n}\rangle\langle{n}|. $$
(9.117)

All of the functionals considered in this chapter may be expressed in this form. Once the appropriate matrix structures A, B etc. are described, the form of the Kohn-Sham equations and potentials follows directly from these expressions.

9.1.1.1 Fermions

The only remaining complication is to impose the appropriate constraint on the density matrix \({\rho}.\) This ensures that the appropriate statistics of the particles is enforces. As we shall be interested in ‘Fermions’, the relevant constraint on the density matrix (dictated by the canonical commutation relationships) is

$$ {\rho} + {\mathbf{C}}{\rho}^{T}{\mathbf{C}} = 1 $$
(9.118)

where \({\mathbf{C}} = {\mathbf{C}}^{T}\) is the charge conjugation matrix:

$$ {\mathbf{C}}|{\psi}\rangle = |{\psi}\rangle^{\ast}. $$
(9.119)

This follows from the anti-commutation relationship for fermions and is discussed further in the ‘Single Particle Hamiltonian’. The constrained minimization of the functional \(F({\rho})\) results in the standard Fermi distribution Footnote 7

$$ {\rho} = \frac{1} {1+e^{\beta \left({\mathbf{H}}[{\rho}] - {\mathbf{C}}{\mathbf{H}}^{T}[{\rho}]{\mathbf{C}}\right)}}, $$
(9.120)

which is the fermionic form of the self-consistency condition (9.114) for the density matrix \({\rho}.\) In practise, one does not iterate the entire density matrix. Instead, one stores only the densities \(n_{A}, n_{B},\) etc. Through (9.115), these define the Kohn-Sham Hamiltonian H, which is then diagonalized to form the new density matrix and finally the new densities. If, for example, symmetries allow the Hamiltonian H to be block diagonalized, then one can construct and accumulate the densities in parallel over each block. Finally, the densities represent far fewer parameters than the full density matrix. Thus, more sophisticated root-finding techniques such as Broyden’s method [201] may be efficiently employed: Applying these techniques to the full density matrix would be significantly more expensive.

9.1.2 Single Particle Hamiltonian

It is convenient to express these concepts in the language of second quantization. The Hamiltonian will appear as a quadratic operator of the form

$$ {H}_{s} = \frac{1}{2}{\Uppsi}^{\dagger}{{\fancyscript{H}}}_{s}{\Uppsi} $$
(9.121)

where \({\Uppsi}\) has several components and \({{\fancyscript{H}}}_{s}\) is a matrix. The factor of \(1/2\) accounts for the double counting to be discussed below. For a two component system, the most general \({\Uppsi}\) that allows for all possible pairings has four components:

$$ {\Uppsi} = \left(\begin{array}{l} {a}\\ {b}\\ {a}^{\dagger}\\ {b}^{\dagger}.\end{array}\right). $$
(9.122)

In terms of components of the wavefunction, we will write \({\fancyscript{H}}_{s} \psi = E\psi\) where:

$$ \psi = \left(\begin{array}{l} u_{a}\\ u_{b}\\ {\it v}_{a}\\ {\it v}_{b} \end{array} \right) . $$
(9.123)

The naming of these components is conventional (see for example [117]) and the functions u and v are typically called “Coherence Factors”. Note that the convention is that \({\it v}_{a,b}^{\ast}({\mathbf{r}}, t)\) are the wavefunctions of the particles. In this formulation the Hamiltonian has the form presented in (9.100):

$$ {\fancyscript{H}}_{s} = \left( \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} h_a+U_a & 0 & 0 & \Updelta \\ 0 & h_b+U_b & -\Updelta & 0 \\ 0 & -\Updelta^{\ast}& -h_a^{\ast}-U_a & 0 \\ \Updelta^{\ast}& 0 & 0& -h_b^{\ast}-U_b \end{array}\right) $$
(9.124)

9.1.2.1 Four-Component Formalism

We shall start with this full four-component formalism but soon utilized a reduction: If the superfluid pairing \(\Updelta \sim \langle{{a}{b}}\rangle\) channel is attractive, then often the “Fock” channel is repulsive so we can take \(\langle{{a}^{\dagger}{b}}\rangle = 0.\) In combination with the double-counting discussed below, this will allow us to fully express the system in terms of two components.

The four-component formalism double counts the degrees of freedom: \({\Uppsi}\) contains both a and \({a}^{\dagger}.\) This degeneracy is described in terms of the charge conjugation matrix \({\fancyscript{C}}{:}\)

$$ {\Uppsi}^{\dagger} = {\fancyscript{C}}{\Uppsi} \qquad \hbox{where} \qquad {\fancyscript{C}} = \left(\begin{array}{ll} {\bf 0} & {\bf 1}\\ {\bf 1} & {\bf 0}\end{array}\right) . $$
(9.125)

The operator \({\Uppsi}\) will satisfy the single-particle Shrödinger equations

$$ {H}_{s}|{\Uppsi}\rangle = E|{\Uppsi}\rangle $$
(9.126)

where the Hamiltonian \({H}_{s}={\Uppsi}^{\dagger}{\fancyscript{H}}_{s}{\Uppsi}\) can be chosen to satisfy (the sign implements Fermi statistics)

$$ {\fancyscript{C}}{\fancyscript{H}}_{s}^{T}{\fancyscript{C}} = -{\fancyscript{H}}_{s}. $$
(9.127)

In this form, the charge conjugation symmetry ensures that the eigenstates will appear in \(\pm E\) pairs. Footnote 8 Keeping only one set of pairs will ensure that we do not double count. Using this symmetry, we can formally diagonalize the Hamiltonian by a unitary transformation \({\fancyscript{U}}\) such that:

$$ {\fancyscript{U}}^{\dagger}{\fancyscript{H}}_{s}{\fancyscript{U}} = \frac{1}{2} \left(\begin{array}{ll}{\mathbf{E}} & {\bf 0}\\ {\bf 0} & -{\mathbf{E}}\end{array}\right) $$
(9.128)

where \({\mathbf{E}} = \hbox{diag}(E_{i})\) is diagonal. The columns of the matrix \({\fancyscript{U}}\) are the (ortho) normalized wave-functions and describe the “coherence” factors. To determine the correct expressions for the densities in terms of the wavefunctions we form them in the diagonal basis and then transform back to the original basis using \({\fancyscript{U}}.\)

Despite this formal degeneracy of eigenstates, we are not aware of a general technique to block-diagonalize the original Hamiltonian in the presence of non-zero terms of the form \(\langle{{a}^{\dagger}{b}}\rangle,\) though perhaps the symmetry might be incorporated into the eigensolver.

9.1.2.2 Two-Component Formalism

If \(\langle{{a}^{\dagger}{b}}\rangle = 0,\) however, then the Hamiltonian is naturally block diagonal:

$$ {\fancyscript{H}}_{s} = \frac{1}{2} \left( \begin{array}{ll} {\mathbf{H}}_{s} & {\mathbf{0}}\\ {\mathbf{0}} & -{\mathbf{H}}_{s}^{T}\end{array}\right) , \qquad {H}_{s} = {\psi}^{\dagger}{\mathbf{H}}_{s}{\psi} + \hbox{const}, $$
(9.129)

and one may consider only a single block in terms of the reduced set of operators

$$ {\psi} = \left(\begin{array}{l} {a}\\ {b}^{\dagger} \end{array}\right) . $$
(9.130)

This directly avoids any double counting issues. This system may be diagonalized:

$$ {\mathbf{H}}_{s}{\mathbf{U}} = {\mathbf{U}}{\mathbf{E}}. $$
(9.131)

The matrix \({\mathbf{U}}\) defines the single “quasi”-particle operators \({\phi}\) as linear combination of the physical particle operators contained in \({\psi}\):

$$ {\phi} = {\mathbf{U}}^{\dagger} {\psi}. $$
(9.132)

The Hamiltonian is diagonal in this basis

$$ {H}_{s} = {\phi}^{\dagger}\cdot{\mathbf{E}}\cdot{\phi} $$
(9.133)

and hence expectation values may be directly expressed

$$ \langle{{\phi}{\phi}^{\dagger}}\rangle = \theta_{\beta}({\mathbf{E}}) = \left(\begin{array}{llll} \theta_{\beta}(E_{0})\\ & \theta_{\beta}(E_{1})\\ && \ddots\\ &&& \theta_{\beta}(E_{n})\end{array}\right) $$

where \(1-\theta_{\beta}(E) = f_{\beta}(E)\) is the appropriate distribution function: For fermions we have

$$ \theta_{\beta}(E) = \frac{1} {1+e^{-\beta E}}. $$
(9.134)

At \(T=0\) this reduces to \(\theta_{0}(E) = \theta(E)\) and is equivalent to the zero-temperature property that negative energy states are filled while positive energy states are empty. This may be simply transformed back into the original densities (on the diagonal) and anomalous densities (off-diagonal):

$$ \begin{aligned} {\mathbf{F}}_{+} = \langle{{\psi}{\psi}^{\dagger}}\rangle =& \left(\begin{array}{ll} \langle{{a}{a}^{\dagger}}\rangle & \langle{{a}{b}}\rangle\\ \langle{{b}^{\dagger}{a}^{\dagger}}\rangle & \langle{{b}^{\dagger}{b}}\rangle\end{array}\right) = {\mathbf{U}}\theta_{\beta}({\mathbf{E}}){\mathbf{U}}^{\dagger},\\ {\mathbf{F}}_{-}^{T} = \langle{{\psi}^{\ast}{\psi}^{T}}\rangle =& \left(\begin{array}{ll} \langle{{a}^{\dagger}{a}}\rangle & \langle{{a}^{\dagger}{b}^{\dagger}}\rangle\\ \langle{{b}{a}}\rangle & \langle{{b}{b}^{\dagger}}\rangle \end{array}\right) = {\mathbf{U}}^{\ast}\theta_{\beta}(-{\mathbf{E}}){\mathbf{U}}^{T}. \end{aligned} $$

Fermi statistics demands \({\mathbf{F}}_{-} + {\mathbf{F}}_{+} = {\mathbf{1}}\) but we may have to relax this requirement somewhat in order to regulate the theory in terms of an energy cutoff \(\theta_{c}(E).\) The columns of \({\mathbf{U}}_{n}\) of U correspond to the single-particle “wavefunctions” for the state with energy \(E_{n}.\) We partition these into two components sometimes referred to as “coherence factors”

$$ {\mathbf{U}}_{n} = \left(\begin{array}{l} {\mathbf{u}}_{n}\\ {\mathbf{v}}_{n}\end{array}\right) . $$
(9.135)

The unitarity of U imposes the conditions that

$$ {\mathbf{u}}_{m}^{\dagger}{\mathbf{u}}_{n} + {\mathbf{v}}_{m}^{\dagger}{\mathbf{v}}_{n} =\delta_{mn} $$
(9.136a)
$$ \sum_{n}{\mathbf{u}}_{n}{\mathbf{u}}_{n}^{\dagger} = \sum_{n}{\mathbf{v}}_{n}{\mathbf{v}}_{n}^{\dagger} = 1, $$
(9.136b)
$$ \sum_{n}{\mathbf{u}}_{n}{\mathbf{v}}_{n}^{\dagger} = \sum_{n}{\mathbf{v}}_{n}{\mathbf{u}}_{n}^{\dagger} = 0. $$
(9.136c)

From this we may read off the expressions for the densities

$$ {\mathbf{n}}_{a} = \langle{{a}^{\dagger}{a}}\rangle = \sum_{n} {\mathbf{u}}_{n}^{\ast}{\mathbf{u}}_{n}^{T} \theta_{\beta}(-E_{n}), $$
(9.137a)
$$ {\mathbf{n}}_{b} = \langle{{b}^{\dagger}{b}}\rangle = \sum_{n} {\mathbf{v}}_{n}{\mathbf{v}}_{n}^{\dagger} \theta_{\beta}(E_{n}), $$
(9.137b)
$$ {\nu} = \langle{{a}{b}}\rangle = \sum_{n} {\mathbf{u}}_{n}{\mathbf{v}}_{n}^{\dagger} \theta_{\beta}(E_{n}) $$
(9.137c)
$$ =-\sum_{n} {\mathbf{u}}_{n}{\mathbf{v}}_{n}^{\dagger} \theta_{\beta}(-E_{n}) $$
(9.137d)
$$ = \sum_{n} {\mathbf{u}}_{n}{\mathbf{v}}_{n}^{\dagger} \frac{\theta_{\beta}(E_{n})-\theta_{\beta}(-E_{n})} {2}. $$
(9.137e)

The last form for \({\nu}\) must be used if the regulator is implemented such that \(\theta_{c}(E) + \theta_{c}(-E)\neq 1,\) in particular, if \(\theta_{c}(E)=0\) for \(\lvert{E}>E_{c}\rvert.\) Note that these expressions are basis independent, e.g. in position space:

$$ n_{a}({\mathbf{r}},{\mathbf{r}}^{\prime}) = \sum_{n} u_{n}({\mathbf{r}})^{\ast}u_{n}({\mathbf{r}}^{\prime})^{T} \theta_{\beta}(-E_{n}). $$
(9.138)

The energy \(E_{n}\) here is the energy determined by solving these equations and will contain both positive and negative energies.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bulgac, A., Forbes, M.M., Magierski, P. (2012). The Unitary Fermi Gas: From Monte Carlo to Density Functionals. In: Zwerger, W. (eds) The BCS-BEC Crossover and the Unitary Fermi Gas. Lecture Notes in Physics, vol 836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21978-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21978-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21977-1

  • Online ISBN: 978-3-642-21978-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics