Skip to main content

Unitary Fermi Gas, \(\epsilon\) Expansion, and Nonrelativistic Conformal Field Theories

  • Chapter
  • First Online:
The BCS-BEC Crossover and the Unitary Fermi Gas

Part of the book series: Lecture Notes in Physics ((LNP,volume 836))

Abstract

We review theoretical aspects of unitary Fermi gas (UFG), which has been realized in ultracold atom experiments. We first introduce the \(\epsilon\) expansion technique based on a systematic expansion in terms of the dimensionality of space. We apply this technique to compute the thermodynamic quantities, the quasiparticle cum, and the criticl temperature of UFG. We then discuss consequences of the scale and conformal invariance of UFG. We prove a correspondence between primary operators in nonrelativistic conformal field theories and energy eigenstates in a harmonic potential. We use this correspondence to compute energies of fermions at unitarity in a harmonic potential. The scale and conformal invariance together with the general coordinate invariance constrains the properties of UFG. We show the vanishing bulk viscosities of UFG and derive the low-energy effective Lagrangian for the superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic scaling and conformal symmetries that can be in principle realized in ultracold atom experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The choice of the extra factor is arbitrary, if it has the correct dimension, and does not affect final results because the difference can be absorbed by the redefinition of \(\varphi.\) The particular choice of g in Eq. 7.9 [or \(\bar g\) in Eq. 7.13] simplifies expressions for loop integrals in the intermediate steps.

  2. 2.

    See the footnote after Eq. 7.9.

  3. 3.

    It has been shown that \(F(\epsilon)\) has a nonanalytic term \(-\frac{3}{ 8}\epsilon^3\ln\,\epsilon\) to the next-to-next-to-next-to-leading order in \(\epsilon\) [10]. Because we are working up to \(O(\epsilon^2),\) we neglect such a nonanalytic contribution.

  4. 4.

    If we excluded the interpolation by the simple polynomial \((\xi\approx0.340)\) as was done in Ref. [10], we would obtain \(0.367\,{\pm}\,0.010,\) which is consistent with the Borel-Padé interpolations without the NNLO correction near \(d\,{=}\,2\) [10].

  5. 5.

    One potential that realizes the unitarity interaction is \(V(r)\,{=}\,(\pi/2)^2\lim_{r_0\,{\to}\,0}\theta(r_0-r)/(2m_\uparrow\downarrow r_0^2),\) where \(m_\uparrow\downarrow\equiv m_\uparrow m_\downarrow/(m_\uparrow+m_\downarrow)\) is the reduced mass.

  6. 6.

    This situation illustrates a general feature: onsets of the Efimov effect occur when the ground state energy of the corresponding few-body system in a harmonic potential is equal to \({\frac{d+2}{2}}\omega.\)

  7. 7.

    \(\tilde{P}_0(z)\,{=}\,1,\; \tilde{P}_1(z)\,{=}\,z,\; \ldots.\)

References

  1. Regal, C.A., Greiner, M., Jin, D.S.: Phys. Rev. Lett. 92, 040403 (2004) [arXiv:cond-mat/0401554]

    Google Scholar 

  2. Zwierlein, M.W., Stan, C.A., Schunck, C.H., Raupach, S.M.F., Kerman, A.J., Ketterle, W.: Phys. Rev. Lett. 92, 120403 (2004) [arXiv:cond-mat/0403049]

    Google Scholar 

  3. Eagles, D.M.: Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  4. Leggett, A.J.: Diatomic molecules and cooper Paris. In: Pekalski, A., Przystawa, R. (eds.) Modern Trends in the Theory of Condensed Matter. Springer, Berlin (1980)

    Google Scholar 

  5. Leggett, A.J.: J. Phys. (Paris) Colloq 41, C7-19 (1980)

    Article  Google Scholar 

  6. Nozières, P., Schmitt-Rink, S.: J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  7. Nishida, Y., Son, D.T.: Phys. Rev. Lett. 97, 050403 (2006) [arXiv:cond-mat/0604500]

    Google Scholar 

  8. Nishida, Y., Son, D.T.: Phys. Rev. A 75, 063617 (2007) [arXiv:cond-mat/0607835]

    Google Scholar 

  9. Nishida, Y.: Phys. Rev. A 75, 063618 (2007) [arXiv:cond-mat/0608321]

    Google Scholar 

  10. Arnold, P., Drut, J.E., Son, D.T.: Phys. Rev. A 75, 043605 (2007) [arXiv:cond-mat/ 0608477]

    Google Scholar 

  11. Nishida, Y.: Phys. Rev. A 79, 013627 (2009) [arXiv:0808.3826 [cond-mat.other]]

    Google Scholar 

  12. Nishida, Y., Son, D.T.: Phys. Rev. D 76, 086004 (2007) [arXiv:0706.3746 [hep-th]]

    Google Scholar 

  13. Son, D.T.: Phys. Rev. Lett. 98, 020604 (2007) [arXiv:cond-mat/0511721]

    Google Scholar 

  14. Son, D.T., Wingate, M.: Ann. Phys. 321, 197 (2006) [arXiv:cond-mat/0509786]

    Google Scholar 

  15. Hagen, C.R.: Phys. Rev. D 5, 377 (1972)

    Article  ADS  Google Scholar 

  16. Niederer, U.: Helv. Phys. Acta 45, 802 (1972)

    MathSciNet  Google Scholar 

  17. Nishida, Y., Son, D.T., Tan, S.: Phys. Rev. Lett. 100, 090405 (2008) [arXiv:0711.1562 [cond-mat.other]]

    Google Scholar 

  18. Nishida, Y., Tan, S.: Phys. Rev. Lett. 101, 170401 (2008) [arXiv:0806.2668 [cond-mat.other]]

    Google Scholar 

  19. Nussinov, Z., Nussinov, S.: Phys. Rev. A 74, 053622 (2006) [arXiv:cond-mat/ 0410597]

    Google Scholar 

  20. Nishida, Y.: Unitary Fermi gas in the \(\epsilon\) expansion. Ph.D. Thesis, University of Tokyo (2007) [arXiv:cond-mat/0703465]

    Google Scholar 

  21. Nikolic, P., Sachdev, S.: Phys. Rev. A 75, 033608 (2007) [arXiv:cond-mat/0609106]

    Google Scholar 

  22. Carlson, J., Reddy, S.: Phys. Rev. Lett. 95, 060401 (2005) [arXiv:cond-mat/ 0503256]

    Google Scholar 

  23. Burovski, E., Prokof’ev, N., Svistunov, B., Troyer, M.: Phys. Rev. Lett. 96, 160402 (2006) [arXiv:cond-mat/0602224]

    Google Scholar 

  24. Henkel, M.: J. Statist. Phys. 75, 1023 (1994) [arXiv:hep-th/9310081]

    Google Scholar 

  25. Werner, F., Castin, Y.: Phys. Rev. Lett. 97, 150401 (2006a) [arXiv:cond-mat/0507399]

    Google Scholar 

  26. Werner, F., Castin, Y.: Phys. Rev. A 74, 053604 (2006b) [arXiv:cond-mat/0607821]

    Google Scholar 

  27. Tan, S.: Short range scaling laws of quantum gases with contact interactions. arXiv:cond-mat/0412764

    Google Scholar 

  28. Bertulani, C.A., Hammer, H.W., Van Kolck, U.: Nucl. Phys. A 712, 37 (2002) [arXiv:nucl-th/0205063]

    Google Scholar 

  29. Hammer, H.W., Lee, D.: Phys. Lett. B 681, 500 (2009) [arXiv:0907.1763 [nucl-th]]

    Google Scholar 

  30. Hammer, H.W., Lee, D.: Causality and the effective range expansion. arXiv:1002.4603 [nucl-th]

    Google Scholar 

  31. Busch, T., Englert, B.-G., , Rza̧żewski K., Wilkens, M.: Found. Phys. 28, 549 (1998)

    Article  Google Scholar 

  32. Stöferle, T., Moritz, H., Günter, K., Köhl, M., Esslinger, T.: Phys. Rev. Lett. 96, 030401 (2006) [arXiv:cond-mat/0509211]

    Google Scholar 

  33. Efimov, V.: Sov. Phys. JETP Lett. 16, 34 (1972)

    ADS  Google Scholar 

  34. Efimov, V.: Nucl. Phys. A 210, 157 (1973)

    Article  ADS  Google Scholar 

  35. Blume, D., von Stecher, J., Greene, C.H.: Phys. Rev. Lett. 99, 233201 (2007) [arXiv:0708.2734 [cond-mat.other]]

    Google Scholar 

  36. Castin, Y.: Comptes Rendues Physique 5, 407 (2004) [arXiv:cond-mat/0406020]

    Google Scholar 

  37. Greiter, M., Wilczek, F., Witten, E.: Mod. Phys. Lett. B 3, 903 (1989)

    Article  ADS  Google Scholar 

  38. Nishida, Y.: Ann. Phys. 324, 897 (2009) [arXiv:0810.1321 [cond-mat.other]]

    Google Scholar 

  39. Nishida, Y., Tan, S.: Phys. Rev. A 79, 060701 (2009) [arXiv:0903.3633 [cond-mat.other]]

    Google Scholar 

  40. Nishida, Y.: Phys. Rev. A 82, 011605(R) (2010) [arXiv:0906.4584 [cond-mat.quant-gas]]

    Google Scholar 

  41. Nishida, Y., Son, D.T.: Phys. Rev. A 82, 043606 (2010) [arXiv:0908.2159 [cond-mat.quant-gas]]

    Google Scholar 

  42. Lamporesi, G., Catani, J., Barontini, G., Nishida, Y., Inguscio, M., Minardi, F.: Phys. Rev. Lett. 104, 153202 (2010) [arXiv:1002.0114 [cond-mat.quant-gas]]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nishida .

Editor information

Editors and Affiliations

Appendix: Scaling Dimensions of Three-Body Operators

Appendix: Scaling Dimensions of Three-Body Operators

In this Appendix, we derive the formula to compute the scaling dimensions of three-body composite operators for arbitrary mass ratio \(m_\uparrow/m_\downarrow,\) angular momentum l, and spatial dimension d from a field theory perspective. We first consider a three-body operator composed of two spin-\(\uparrow\) and one spin-\(\downarrow\) fermions with zero orbital angular momentum \(l\,{=}\,0{:}\)

$$ {\mathcal{O}}_{\uparrow\uparrow\downarrow}^{(l\,{=}\,0)}(\user2{x}) \equiv Z_\Uplambda^{-1}\phi\psi_\uparrow(\user2{x}), $$
(7.131)

where \(Z_\Uplambda\) is a cutoff-dependent renormalization factor. We study the renormalization of the composite operator \(\phi\psi_\uparrow\) by evaluating its matrix element \(\langle0|\phi\psi_\uparrow(\user2{x})|p,-p\rangle.\) Feynman diagrams to renormalize \(\phi\psi_\uparrow\) is depicted in Fig.  7.15. The vertex function \(Z(p_0,\user2{p})\) in Fig.  7.15 satisfies the following integral equation:

$$ \begin{aligned} Z(p_0,\user2{p}) \,{=}\,& 1 - i\int {\frac{dk_0d\user2{k}}{(2\pi)^{d+1}}} G_\uparrow(k)G_\downarrow(-p-k)D(-k)Z(k_0,\user2{k}) \\ \,{=}\,& 1 - \int {\frac{d\user2{k}}{(2\pi)^d}} \left.G_\downarrow(-p-k)D(-k)Z(k_0,\user2{k})\right|_{k_0\,{=}\,{\frac{\user2{k}^2}{2m_\uparrow}}}, \end{aligned} $$
(7.132)

where we used the analyticity of \(Z(k_0,\user2{k})\) on the lower half plane of \(k_0.\) \(G_\sigma(p)\equiv\left(p_0-{\frac{\user2{p}^2}{2m_\sigma}}+0^+\right)^{-1}\) is the fermion propagator and \(D(p)\) is the resumed propagator of \(\phi\) field given in Eq. 7.78. If we set \(p_0\,{=}\,{\frac{\user2{p}^2}{2m_\uparrow}},\) Eq.  7.132 reduces to the integral equation for \(z(\user2{p})\equiv Z \left({\frac{\user2{p}^2}{2m_\uparrow}},\user2{p}\right){.}\)

Fig.  7.15
figure 15

Feynman diagrams to renormalize three-body composite operators. The solid lines are the propagators of \(\psi_\uparrow\) and \(\psi_\downarrow\) fields while the dotted lines are the resumed propagators of \(\phi\) field. The shaded bulbs represent the vertex function \(Z(p)\)

Because of the scale and rotational invariance of the system, we can assume the form of \(z(\user2{p})\) to be \(z(\user2{p})\propto\left({\frac{|\user2{p}|} {\Uplambda}}\right)^{\gamma},\) where \(\Uplambda\) is a momentum cutoff. Accordingly the renormalization factor becomes \(Z_\Uplambda\propto\Uplambda^{-\gamma}\) with \(\gamma\,{=}\,-{\partial}\hbox{ln} Z_\Uplambda/{\partial}\hbox{ln}\Uplambda\) being the anomalous dimension of the composite operator \(\phi\psi_\uparrow.\) In terms of \(\gamma,\) the scaling dimension of the renormalized operator \({\mathcal{O}}_{\uparrow\uparrow\downarrow}^{(l\,{=}\,0)}\) is given by

$$ \Updelta_{\uparrow\uparrow\downarrow}^{(l\,{=}\,0)} \,{=}\, \Updelta_{\phi}+\Updelta_{\psi_\uparrow}+\gamma \,{=}\, 2+{\frac{d}{2}}+\gamma. $$
(7.133)

Substituting the expression of \(z(\user2{p})\) into Eq. 7.132 and performing the integration over \(|\user2{k}|\) at \(\Uplambda\,{\to}\,\infty,\) we obtain the following equation to determine \(\gamma{:}\)

$$ 1 \,{=}\, {\frac{2\pi^{1/2} \left[{\frac{m_\downarrow(2m_\uparrow{+}m_\downarrow)}{(m_\uparrow{+}m_\downarrow)^2}}\right]^{1-d/2}} {\Upgamma \left(1-{\frac{d}{2}}\right) \Upgamma \left({\frac{d-1} {2}}\right)\sin[(\gamma+1)\pi]}} \int\limits_0^\pi d\theta \sin^{d-2}\theta {\frac{\sin[(\gamma+1)\chi]}{\sin\,\chi}} $$
(7.134)

with \(\cos\,\chi\equiv{\frac{m_\uparrow}{m_\uparrow+m_\downarrow}}\cos\,\theta.\) The integration over \(\theta\) can be done analytically in \(d\,{=}\,3,\) but otherwise, has to be done numerically.

Similarly, for general orbital angular momentum l, we can derive the equation satisfied by the anomalous dimension \(\gamma_l{:}\)

$$ 1 \,{=}\, {\frac{2\pi^{1/2} \left[{\frac{m_\downarrow(2m_\uparrow{+}m_\downarrow)}{(m_\uparrow{+}m_\downarrow)^2}}\right]^{1-d/2}} {\Upgamma\!\left(1-{\frac{d}{2}}\right) \Upgamma \left({\frac{d-1} {2}}\right)\sin[(\gamma_l+l+1)\pi]}} \int\limits_0^\pi d\theta \sin^{d-2}\theta \tilde{P}_l(\cos\,\theta) {\frac{\sin[(\gamma_l+l+1)\chi]}{\sin\,\chi}}, $$
(7.135)

where \(\tilde{P}_l(z)\) is a Legendre polynomial generalized to d spatial dimensions. Footnote 7 The scaling dimension of the renormalized operator \({\mathcal{O}}_{\uparrow\uparrow\downarrow}^{(l)}\) with orbital angular momentum l is now given by

$$ \Updelta_{\uparrow\uparrow\downarrow}^{(l)} \,{=}\, \Updelta_{\phi}+\Updelta_{\psi_\uparrow}+l+\gamma_l \,{=}\, 2+{\frac{d} {2}}+l+\gamma_l. $$
(7.136)

\(\Updelta_{\uparrow\uparrow\downarrow}^{(l)}\) for \(l\,{=}\,0,1\) in \(d\,{=}\,3\) are plotted as functions of the mass ratio \(m_\uparrow/m_\downarrow\) in Fig.  7.12, while \(\Updelta_{\uparrow\uparrow\downarrow}^{(l)}\) for \(l\,{=}\,0,1\) with equal masses \(m_\uparrow\,{=}\,m_\downarrow\) are plotted in Fig.  7.14 as functions of the spatial dimension d.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishida, Y., Son, D.T. (2012). Unitary Fermi Gas, \(\epsilon\) Expansion, and Nonrelativistic Conformal Field Theories. In: Zwerger, W. (eds) The BCS-BEC Crossover and the Unitary Fermi Gas. Lecture Notes in Physics, vol 836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21978-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21978-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21977-1

  • Online ISBN: 978-3-642-21978-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics