Skip to main content

Universal Relations for Fermions with Large Scattering Length

  • Chapter
  • First Online:
The BCS-BEC Crossover and the Unitary Fermi Gas

Part of the book series: Lecture Notes in Physics ((LNP,volume 836))

Abstract

Particles with short-range interactions that produce a large scattering length have universal properties that depend only on the scattering length [1]. A system consisting of such particles is strongly interacting in the sense that there are effects of the interactions that must be treated nonperturbatively. These strong interactions give rise to strong correlations among the particless. Many theoretical methods, even if they are nonperturbative, are inadequate for dealing with such strong correlations. However, such a system is also governed by universal relations that follow from the short-distance and short-time dynamics associated with the large scattering length. These universal relations provide powerful constraints on the behavior of the system. They hold for any state of the system: few-body or many-body, ground state or nonzero temperature, homogeneous or in a trapping potential, normal state or superfluid, balanced in the two spin states or imbalanced. They connect various properties of the system, ranging from thermodynamic variables to large-momentum and high-frequency tails of correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Ref. [13], the contact density was denoted by \(16 \pi^2 \hbar^2 C\) and the total number density was denoted by \(2n\) instead of \(n.\)

References

  1. Braaten, E., Hammer, H.W.: Phys. Rept. 428, 259 (2006). arXiv:cond-mat/0410417

    Google Scholar 

  2. Tan, S.: Ann. Phys. 323, 2952 (2008). arXiv:cond-mat/0505200

    Google Scholar 

  3. Tan, S.: Ann. Phys. 323, 2971 (2008). arXiv:cond-mat/0508320

    Google Scholar 

  4. Tan, S.: Ann. Phys. 323, 2987 (2008). arXiv:0803.0841

    Google Scholar 

  5. Braaten, E., Platter, L.: Phys. Rev. Lett. 100, 205301 (2008). arXiv:0803.1125

    Google Scholar 

  6. Thomas, J.E., Kinast, J., Turlapov, A.: Rev. Lett. 95, 120402 (2005). arXiv:cond-mat/0503620

    Google Scholar 

  7. Blume, D., Daily, K.M.: Phys. Rev. A 80, 053626 (2009). arXiv:0909.2701

    Google Scholar 

  8. Chang, S.Y., Pandharipande, V.R., Carlson, J., Schmidt, K.E.: Phys. Rev. A 70, 043602 (2004). arXiv:physics/0404115

    Google Scholar 

  9. Astrakharchik, G.E., Boronat, J., Casulleras, J., Giorgini, S.: Phys. Rev. Lett. 93, 200404 (2004). arXiv:cond-mat/0406113

    Google Scholar 

  10. Lobo, C., Carusotto, I., Giorgini, S., Recati, A., Stringari, S.: Phys. Rev. Lett. 97, 100405 (2006). arXiv:cond-mat/0604282

    Google Scholar 

  11. Petrov, D.S., Salomon, C., Shlyapnikov, G.V.: Phys. Rev. Lett. 93, 090404 (2004). arXiv:cond-mat/0309010

    Google Scholar 

  12. Haussmann, R., Punk, M., Zwerger, W.: Phys. Rev. A 80, 063612 (2009). arXiv:0904.1333

    Google Scholar 

  13. Yu, Z., Bruun, G.M., Baym, G.: Phys. Rev. A 80, 023615 (2009). arXiv:0905.1836

    Google Scholar 

  14. Palestini, F., Perali, A., Pieri, P., Strinati, G.C.: Phys. Rev. A 82, 021605(R) (2010). arXiv:1005.1158

    Google Scholar 

  15. Prokof’ev, N., Svistunov, B.: Phys. Rev. B 77, 020408(R) (2008). arXiv:0707.4259

    Google Scholar 

  16. Punk, M., Dumitrescu, P.T., Zwerger, W.: Phys. Rev. A 80, 053605 (2009). arXiv:0908.1343

    Google Scholar 

  17. Yu, Z., Baym, G.: Phys. Rev. A 73, 063601 (2006). arXiv:cond-mat/0510675

    Google Scholar 

  18. Zhang, S., Leggett, A.J.: Phys. Rev. A 77, 033614 (2008)

    Google Scholar 

  19. Punk, M., Zwerger, W.: Phys. Rev. Lett. 99, 170404 (2007). arXiv:0707.0792

    Google Scholar 

  20. Baym, G., Pethick, C.J., Yu, Z., Zwierlein, M.W.: Phys. Rev. Lett. 99, 190407 (2007). arXiv:0707.0859

    Google Scholar 

  21. Zwierlein, M.W., Hadzibabic, Z,, Gupta, S., Ketterle, W.: Phys. Rev. Lett. 91, 250404 (2003). arXiv:cond-mat/0306627

    Google Scholar 

  22. Braaten, E., Kang, D., Platter, L.: Phys. Rev. Lett. 104, 223004 (2010). arXiv:1001.4518

    Google Scholar 

  23. Schneider, W., Shenoy, V.B., Randeria, M.: Theory of radio frequency spectroscopy of polarized Fermi gases. arXiv:0903.3006

    Google Scholar 

  24. Schneider, W., Randeria, M.: Phys. Rev. A 81, 021601(R) (2010). arXiv:0910.2693

    Google Scholar 

  25. Pieri, P., Perali, A., Strinati, G.C.: Nat. Phys. 5, 736 (2009). arXiv:0811.0770

    Google Scholar 

  26. Werner, F.: Phys. Rev. A 78, 025601 (2008). arXiv:0803.3277

    Google Scholar 

  27. Werner, F., Tarruell, L., Castin, Y.: Phys. J. B 68, 401 (2009). arXiv:0807.0078

    Google Scholar 

  28. Zhang, S., Leggett, A.J.: Phys. Rev. A 79, 023601 (2009). arXiv:0809.1892

    Google Scholar 

  29. Braaten, E., Kang, D., Platter, L.: Phys. Rev. A 78, 053606 (2008). arXiv:0806.2277

    Google Scholar 

  30. Combescot, R., Giorgini, S., Stringari, S.: Europhys. Lett. 75, 695 (2006). arXiv:cond-mat/0512048

    Google Scholar 

  31. Hu, H., Liu, X.-J., Drummond, P.D.: Europhys. Lett. 91, 20005 (2010). arXiv:1003.3511

    Google Scholar 

  32. Son, D.T., Thompson, E.G.: Phys. Rev. A 81, 063634 (2010). arXiv:1002.0922

    Google Scholar 

  33. Taylor, E., Randeria, M.: Phys. Rev. A 81, 053610 (2010). arXiv:1002.0869

    Google Scholar 

  34. Enss, T., Haussmann, R., Zwerger, W.: Ann. Phys. 326, 770 (2011). arXiv:1008.0007

    Google Scholar 

  35. Partridge, G.B., Strecker, K.E., Kamar, R.I., Jack, M.W., Hulet, R.G.: Phys. Rev. Lett. 95, 020404 (2005). arXiv:cond-mat/0505353

    Google Scholar 

  36. Kuhnle, E., Veeravalli, G., Dyke, P., Vale, C.J.: Phys. Rev. Lett. 101, 250403 (2008). arXiv:0809.2145

    Google Scholar 

  37. Hu, H., Kuhnle, E,D., Liu, X.-J., Dyke, P., Mark, M., Drummond, P.D., Hannaford, P., Vale, C.J.: Phys. Rev. Lett. 105, 070402 (2010). arXiv:1001.3200

    Google Scholar 

  38. Stewart, J.T., Gaebler, J.P., Drake, T.E., Jin, D.S.: Phys. Rev. Lett. 104, 235301 (2010). arXiv:1002.1987

    Google Scholar 

  39. Navon, N., Nascimbène, S., Chevy, F., Salomon, C.: Science 328, 729 (2010). arXiv:1004.1465

    Google Scholar 

  40. Werner, F., Castin ,Y.: Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions. arXiv:1001.0774

    Google Scholar 

  41. Tan, S.: S-wave contact interaction problem: a simple description. arXiv:cond-mat/0505615

    Google Scholar 

  42. Combescot, R., Alzetto, F., Leyronas, X.: Phys. Rev. A 79, 053640 (2009). arXiv:0901.4303

    Google Scholar 

  43. Kadanoff, L.P.: Phys. Rev. Lett. 23 1430 (1969)

    Google Scholar 

  44. Wilson, K.G., Zimmermann, W.: Comm. Math. Phys. 24, 87 (1972)

    Google Scholar 

  45. Onsager, L.: Phys. Rev. 65, 117 (1944)

    Google Scholar 

  46. Son, D.T., Wingate, M.: Ann. Phys. 321, 197 (2006). arXiv:cond-mat/0509786

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by a joint grant from the Army Research Office and the Air Force Office of Scientific Research. I would like to acknowledge useful comments by Lucas Platter, Shina Tan, Edward Taylor, Felix Werner, and Shizhong Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Braaten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braaten, E. (2012). Universal Relations for Fermions with Large Scattering Length. In: Zwerger, W. (eds) The BCS-BEC Crossover and the Unitary Fermi Gas. Lecture Notes in Physics, vol 836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21978-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21978-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21977-1

  • Online ISBN: 978-3-642-21978-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics