Skip to main content

Thermodynamics of Fermi Gases

  • Chapter
  • First Online:
The BCS-BEC Crossover and the Unitary Fermi Gas

Part of the book series: Lecture Notes in Physics ((LNP,volume 836))

Abstract

Recently, ultra-cold atoms have established a very fruitful connection with condensed matter physics, nuclear physics, astrophysics, and high energy physics on many-body problems in strongly correlated systems. Starting from the pioneering work of Popov and Eagles in the 1970s [1], the connection between superfluidity in a fermionic system with attractive interaction and superfluidity of bosonic pairs of fermions has been the subject of intense theoretical activity (See for instance [2, 3] and other contributions in this book). While the two limiting cases, weakly attractive Fermi gas and weakly repulsive Bose gas are well described by mean field theories, the so-called BEC–BCS crossover region where the gas is strongly correlated poses a challenging theoretical problem. A flurry of theoretical works (see for instance [2, 49]) have been developed in order to address the properties of this seemingly simple many-body system of a fermionic species with two spin states interacting with purely s-wave contact potential, but with tunable strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This guarantees that \(\tilde\mu\) stays positive, by contrast with \(\mu\) which becomes negative in the BEC limit due to the large contribution of the binding energy.

  2. 2.

    The definition is chosen so as to write the chemical potential as \(\mu\,{=}\,\xi_s E_F\) as discussed above.

  3. 3.

    This argument constitutes a heuristic demonstration of the Luttinger theorem [109].

  4. 4.

    Since we start the expansion from \(N_\downarrow\,{=}\,0,\; \delta N_\downarrow\) is actually the number of minority atoms.

  5. 5.

    As a comparison, for an ideal Boltzmann gas of distinguishable particles, the specific heat is constant, while the susceptibility and the compressibility diverge at low temperature as \(1/T\)

  6. 6.

    This relations is similar to the the one existing between the condensation energy and the critical magnetic field in superconductors.

  7. 7.

    Note that here our definition of the pseudo-gap characteristic energy \(T^*\) is based on the properties of the normal phase at \(T\,{=}\,0.\) Another definition is the temperature \(T^{**}\) at which the dip vanishes [130].

  8. 8.

    Note that without this factor the free energy is not an extensive quantity.

References

  1. Eagles, D.M: Phys. Rev. 186(2), 456–463 (1969)

    Article  ADS  Google Scholar 

  2. Inguscio, M., Ketterle, W., Salomon, C. (eds.): Proceedings of the International School of Physics Enrico Fermi on Ultracold Fermi gases, Course CLXIV, Varenna. Società Italiana di Fisica (2006)

    Google Scholar 

  3. Giorgini, S., Pitaevskii, L.P, Stringari, S.: Rev. Mod. Phys. 80(4), 1215–1274 (2008)

    Article  ADS  Google Scholar 

  4. Holland, M., Kokkelmans, S.J.J.M.F., Chiofalo, M.L., Walser, R.: Phys. Rev. Lett. 87(12), 120406 (2001)

    Article  ADS  Google Scholar 

  5. Heiselberg, H.: Phys. Rev. A 63(4), 043606 (2001)

    Article  ADS  Google Scholar 

  6. Astrakharchik, G.E, Boronat, J., Casulleras, J., Giorgini, S.: Phys. Rev. Lett. 93(20), 200404 (2004)

    Article  ADS  Google Scholar 

  7. Bulgac, A., Drut, J.E., Magierski, P.: Phys. Rev. A 78(2), 23625 (2008)

    Article  ADS  Google Scholar 

  8. Haussmann, R., Rantner, W., Cerrito, S., Zwerger, W.: Phys. Rev. A 75(2), 023610 (2007)

    Article  ADS  Google Scholar 

  9. Hu, H., Liu, X.J., Drummond, P.D.: Europhys. Lett. 74, 574–580 (2006)

    Article  ADS  Google Scholar 

  10. Cornell, E.A., Wieman, C.E.: Rev. Mod. Phys. 74(3), 875–893 (2002)

    Article  ADS  Google Scholar 

  11. DeMarco, B., Jin, D.S: Science 285(5434), 1703 (1999)

    Article  Google Scholar 

  12. Petrov, D.S., Salomon, C., Shlyapnikov, G.V.: Phys. Rev. Lett. 93(9), 090404 (2004)

    Article  ADS  Google Scholar 

  13. Cubizolles, J., Bourdel, T., Kokkelmans, S.J.J.M.F., Shlyapnikov, G.V., Salomon, C.: Phys. Rev. Lett. 91(24), 240401 (2003)

    Google Scholar 

  14. O’Hara, K.M., Hemmer, S.L., Gehm, M.E., Granade, S.R., Thomas, J.E.: Science 298(5601), 2179 (2002)

    Article  ADS  Google Scholar 

  15. Bourdel, T., Cubizolles, J., Khaykovich, L., Magalhães, K.M.F., Kokkelmans, S.J.J.M.F., Shlyapnikov, G.V., Salomon, C.: Phys. Rev. Lett 91(2), 020402 (2003)

    Google Scholar 

  16. Jochim, S., Bartenstein, M., Altmeyer, A., Hendl, G., Riedl, S., Chin, C., Hecker Denschlag, J., Grimm, R.: Science 302(5653), 2101 (2003)

    Article  ADS  Google Scholar 

  17. Greiner, M., Regal, C.A., Jin, D.S.: Nature 426(6966), 537–540 (2003)

    Article  ADS  Google Scholar 

  18. Zwierlein, M.W., Stan, C.A., Schunck, C.H., Raupach, S.M.F., Gupta, S., Hadzibabic, Z., Ketterle, W.: Phys. Rev. Lett. 91(25), 250401 (2003)

    Article  ADS  Google Scholar 

  19. Bourdel, T., Khaykovich, L., Cubizolles, J., Zhang, J., Chevy, F., Teichmann, M., Tarruell, L., Kokkelmans , S.J.J.M.F., Salomon, C.: Phys. Rev. Lett. 93(5), 050401 (2004)

    Article  ADS  Google Scholar 

  20. Ketterle W., Zwierlein, M.: Making, probing and understanding ultra-cold fermi gases in Proceedings of the International School of Physics “Enrico Fermi”, course CLXIV, Varenna. Società Italiana di Fisica (2008)

    Google Scholar 

  21. Regal, C.A., Greiner, M., Jin, D.S.: Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  22. Zwierlein, M.W., Stan, C.A., Schunck, C.H., Raupach, S.M.F., Kerman, A.J., Ketterle, W.: Phys. Rev. Lett., 92, 120403 (2004)

    Article  ADS  Google Scholar 

  23. Zwierlein, M.W., Abo-Shaeer, J.R., Schirotzek, A., Schunck, C.H., Ketterle, W.: Nature 435(7045), 1047–1051 (2005)

    Article  ADS  Google Scholar 

  24. Bartenstein, M., Altmeyer, A., Riedl, S., Jochim, S., Chin, C., Hecker-Denschlag, J., Grimm, R.: Phys. Rev. Lett. 92, 203201 (2004)

    Article  ADS  Google Scholar 

  25. Pitaevskii, L., Stringari, S.: Bose-Einstein condensation. Clarendon Press, UK (2003)

    MATH  Google Scholar 

  26. Chin, C., Bartenstein, M., Altmeyer, A., Riedl, S., Jochim, S., Hecker Denschlag, J., Grimm, R.: Science 305(5687), 1128 (2004)

    Article  ADS  Google Scholar 

  27. Stewart, J.T., Gaebler, J.P., Jin, D.S.: Nature 454(7205), 744–747 (2008)

    Article  ADS  Google Scholar 

  28. Kuhnle, E.D., Hu, H., Liu, X.-J., Dyke, P., Mark, M., Drummond, P.D., Hannaford, P., Vale, C.J.: Phys. Rev. Lett. 105(7), 070402 (2010)

    Article  ADS  Google Scholar 

  29. Shina, T.a.n.: Ann. Phys. 323(12), 2952–2970 (2008)

    Article  MATH  Google Scholar 

  30. Stewart, J.T., Gaebler, J.P., Drake, T.E., Jin, D.S.: Phys. Rev. Lett. 104(23), 235301 (2010)

    Article  ADS  Google Scholar 

  31. Partridge, G.B., Li, W., Kamar, R.I., Liao, Y., Hulet, R.G.: Science 311(5760), 503–505 (2006)

    Article  ADS  Google Scholar 

  32. Zwierlein, M.W., Schunck, C.H., Schirotzek, A., Ketterle, W.: Nature 442(7098), 54–58 (2006)

    Article  ADS  Google Scholar 

  33. Schirotzek, A., Shin, Y.I., Schunck, C.H., Ketterle, W.: Phys. Rev. Lett. 101(14), 140403 (2008)

    Article  ADS  Google Scholar 

  34. Chevy, F.: Phys. Rev. Lett. 96(13), 130401 (2006)

    Article  ADS  Google Scholar 

  35. Stewart, J.T., Gaebler, J.P., Regal, C.A., Jin, D.S.: Phys. Rev. Lett. 97(22), 220406 (2006)

    Google Scholar 

  36. Kinast, J., Turlapov, A., Thomas, J.E., Chen, Q., Stajic, J., Levin, K.: Science 307(5713), 1296 (2005)

    Article  ADS  Google Scholar 

  37. Kinast, J., Hemmer, S.L., Gehm, M.E., Turlapov, A., Thomas, J.E.: Phys. Rev. Lett. 92(15), 150402–150402 (2004)

    Article  ADS  Google Scholar 

  38. Miller, D.E., Chin, J.K., Stan, C.A., Liu, Y., Setiawan, W., Sanner, C., Ketterle, W.: Phys. Rev. Lett. 99(7), 070402 (2007)

    Article  ADS  Google Scholar 

  39. Riedl, S., Sánchez Guajardo, E.R., Kohstall, C., Hecker Denschlag, J., Grimm, R.: Phys. Rev. A 79(5), 053628 (2009)

    Article  ADS  Google Scholar 

  40. Luo, L., Thomas, J.E.: J. Low Temp. Phys. 154(1), 1–29 (2009)

    Article  ADS  Google Scholar 

  41. Horikoshi, M., Nakajima, S., Ueda, M., Mukaiyama, T.: Science 327(5964), 442 (2010)

    Article  ADS  Google Scholar 

  42. Jin D.S., Regal, C.A. Fermi Gas experiments In: Proceedings of the International School of Physics “Enrico Fermi", Course CLXIV, Varenna. Società Italiana di Fisica (2008)

    Google Scholar 

  43. Spiegelhalder, F.M., Trenkwalder, A., Naik, D., Hendl, G., Schreck, F., Grimm, R.: Phys. Rev. Lett. 103(22), 223203 (2009)

    Google Scholar 

  44. Nascimbène, S., Navon, N., Jiang, K., Chevy, F., Salomon, C.: Nature 463, 1057–1060 (2010)

    Article  ADS  Google Scholar 

  45. Müller, T., Zimmermann, B., Meineke, J., Brantut, J.-P., Esslinger, T., Moritz, H.: Phys. Rev. Lett. 105(4), 040401 (2010)

    Article  Google Scholar 

  46. Sanner, C., Su, E.J., Keshet, A., Gommers, R., Shin, Y.-I., Huang, W., Ketterle, W.: Phys. Rev. Lett. 105(4), 040402 (2010)

    Article  ADS  Google Scholar 

  47. Sanner, C., Su, E.J., Keshet, A., Huang, W., Gillen, J., Gommers, R., Ketterle, W.: Phys. Rev. Lett. 106(1), 010402 (2011)

    Article  Google Scholar 

  48. Ho, T.L.: Phys. Rev. Lett. 92(9), 90402 (2004)

    Article  ADS  Google Scholar 

  49. Navon, N., Nascimbène, S., Chevy, F., Salomon, C.: Science 328, 729 (2010)

    Article  ADS  Google Scholar 

  50. Nascimbène, S., Navon, N., Chevy, F., Salomon, C.: New J. Phys. 12, 103206 (2010)

    Article  Google Scholar 

  51. Ho, T., Zhou, Q.: Nat. Phys. 6, 131 (2009)

    Article  Google Scholar 

  52. Cheng, C.-H., Yip, C.-H.: Phys. Rev. B 75(1), 014526 (2007)

    Article  ADS  Google Scholar 

  53. Fuchs, J.N., Leyronas, X., Combescot, R.: Phys. Rev. A 68(4), 043610 (2003)

    Article  ADS  Google Scholar 

  54. Shin, Y.I.: Phys. Rev. A 77(4), 041603 (2008)

    Article  ADS  Google Scholar 

  55. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108(5), 1175–1204 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Leggett, A.J.: J. Phys. Colloq. 41(C7), 19–26 (1980)

    Article  Google Scholar 

  57. Nozières, P., Schmitt-Rink, S.: J. Low Temp. Phys. 59(3), 195–211 (1985)

    Article  ADS  Google Scholar 

  58. Diener , R.B., Sensarma, R., Randeria, M.: Phys. Rev. A 77(2), 23626 (2008)

    Article  ADS  Google Scholar 

  59. Lee, T.D., Yang, C.N.: Phys. Rev. 105(3), 1119–1120 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  60. Baker, G.A. Jr: Rev. Mod. Phys. 43(4), 479–531 (1971)

    Article  ADS  Google Scholar 

  61. Lee, T.D., Huang, K., Yang, C.N.: Phys. Rev. 106(6), 1135–1145 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Wu, T.T.: Phys. Rev. 115(6), 1390–1404 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Braaten, E., Hammer, H.W., Mehen, T.: Phys. Rev. Lett. 88(4), 40401 (2002)

    Article  ADS  Google Scholar 

  64. Leyronas, X., Combescot, R.: Phys. Rev. Lett. 99(17), 170402 (2007)

    Article  ADS  Google Scholar 

  65. Brodsky, I.V., Kagan, M.Y., Klaptsov, A.V., Combescot, R., Leyronas, X.: Phys. Rev. A 73(3), 032724 (2006)

    Article  ADS  Google Scholar 

  66. Carlson, J., Chang, S.-Y., Pandharipande, V.R., Schmidt, K.E.: Phys. Rev. Lett. 91(5), 050401 (2003)

    Article  ADS  Google Scholar 

  67. Perali, A., Pieri, P., Strinati, G.C.: Phys. Rev. Lett. 93(10), 100404 (2004)

    Article  ADS  Google Scholar 

  68. Carlson, J., Reddy, S.: Phys. Rev. Lett. 95(6), 060401 (2005)

    Article  ADS  Google Scholar 

  69. Bartenstein, M., Altmeyer, A., Riedl, S., Jochim, S., Chin, C., Hecker Denschlag, J., Grimm, R.: Phys. Rev. Lett. 92(12), 120401 (2004)

    Article  ADS  Google Scholar 

  70. Tan, S.: Ann. Phys. 323(12), 2971–2986 (2008)

    Article  ADS  MATH  Google Scholar 

  71. Partridge, G.B., Strecker, K.E., Kamar, R.I., Jack, M.W., Hulet, R.G.: Phys. Rev. Lett. 95(2), 020404 (2005)

    Article  ADS  Google Scholar 

  72. Werner, F., Tarruell, L., Castin, Y.: Eur. Phys. J. B 68(3), 401–415 (2009)

    Article  ADS  Google Scholar 

  73. Schirotzek, A., Shin, Y., Schunck, C.H., Ketterle, W.: Phys. Rev. Lett. 101(14), 140403 (2008)

    Article  ADS  Google Scholar 

  74. Clogston, A.M.: Phys. Rev. Lett. 9(6), 266–267 (1962)

    Article  ADS  Google Scholar 

  75. Chandrasekhar, B.S.: App. Phys. Lett. 1(1), 7–8 (1962)

    Article  ADS  Google Scholar 

  76. Pilati, S.k, Giorgini, S.: Phys. Rev. Lett. 100(3), 030401 (2008)

    Article  ADS  Google Scholar 

  77. Alzetto, F., Leyronas, X.: Phys. Rev. A 81(4), 043604 (2010)

    Article  ADS  Google Scholar 

  78. Shin, Y., Schirotzek, A., Schunck, C.H., Ketterle, W.: Phys. Rev. Lett. 101(7), 070404 (2008)

    Article  ADS  Google Scholar 

  79. Viverit, L., Giorgini, S.: Phys. Rev. A 66(6), 063604 (2002)

    Article  ADS  Google Scholar 

  80. Skorniakov G.V., and Ter-Martirosian K.A.: Sov. Phys. JETP, 4 (1957)

    Google Scholar 

  81. Kohn, W., Luttinger, J.M.: Phys. Rev. Lett. 15(12), 524–526 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  82. Larkin, A.I., Ovchinnikov, Y.N.: Zh. Eksp. Teor. Fiz. 47, 1136 (1964)

    Google Scholar 

  83. Fulde, P., Ferrell, R.A.: Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  84. Sarma, G.: J. Phys. Chem. Solids 24(8), 1029–1032 (1963)

    Article  ADS  Google Scholar 

  85. Bulgac, A., Forbes, M.M.N., Schwenk, A.: Phys. Rev. Lett. 97, 020402 (2006)

    Article  ADS  Google Scholar 

  86. Heffner, R.H., Norman, M.R.: Comments Cond. Matt. Phys. 17, 361 (1996)

    Google Scholar 

  87. Tedrow, P.M., Meservey, R., Schwartz, B.B.: Phys. Rev. Lett. 24(18), 1004–1007 (1970)

    Article  ADS  Google Scholar 

  88. Kontos, T., Aprili, M., Lesueur, J., Grison, X.: Phys. Rev. Lett. 86(2), 304–307 (2001)

    Article  ADS  Google Scholar 

  89. Zwierlein, M.W., Schirotzek, A., Schunck, C.H., Ketterle, W.: Science 311(5760), 492–496 (2006)

    Article  ADS  Google Scholar 

  90. Shin, Y., Zwierlein, M.W., Schunck, C.H., Schirotzek, A., Ketterle, W.: Phys. Rev. Lett. 97(3), 030401 (2006)

    Article  ADS  Google Scholar 

  91. Radzihovsky, L., Sheehy, D.E: Rep. Prog. Phys. 73, 076501 (2010)

    Article  ADS  Google Scholar 

  92. Chevy, F., Mora, C.: Rep. Prog. Phys. 73, 112401 (2010)

    Article  ADS  Google Scholar 

  93. Son, D.T., Stephanov, M.A.: Phys. Rev. A 74, 013614 (2006)

    Article  ADS  Google Scholar 

  94. Mora, C., Combescot, R.: Europhys. Lett. 68(1), 79 (2004)

    Article  ADS  Google Scholar 

  95. Sheehy, D.E., Radzihovsky, L.: Phys. Rev. Lett. 96(6), 60401 (2006)

    Article  ADS  Google Scholar 

  96. Sheehy, D.E., Radzihovsky, L.: Ann. Phys. 322(8), 1790–1924 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Lobo, C., Recati, A., Giorgini, S., Stringari, S.: Phys. Rev. Lett. 97(20), 200403 (2006)

    Article  ADS  Google Scholar 

  98. Prokof’ev, N., Svistunov, B.: Phys. Rev. B 77(2), 020408 (2008)

    Article  ADS  Google Scholar 

  99. Chevy, F.: Phys. Rev. A 74(6), 063628 (2006)

    Article  ADS  Google Scholar 

  100. Combescot, R., Recati, A., Lobo, C., Chevy, F.: Phys. Rev. Lett. 98(18), 180402 (2007)

    Article  ADS  Google Scholar 

  101. Combescot, R., Giraud, S.: Phys. Rev. Lett. 101(5), 050404 (2008)

    Article  ADS  Google Scholar 

  102. Schirotzek, A., Wu, C.-.H., Sommer, A., Zwierlein, M.W: Phys. Rev. Lett. 102(23), 230402 (2009)

    Article  ADS  Google Scholar 

  103. Mora, C., Chevy, F.: Phys. Rev. A 80(3), 033607–033617 (2009)

    Article  ADS  Google Scholar 

  104. Combescot, R., Giraud, S., Leyronas, X.: Europhys. Lett. 88(6), 6007 (2009)

    Article  Google Scholar 

  105. Punk, M., Dumitrescu, P.T., Zwerger, W.: Phys. Rev. A 80, 053605–053615 (2009)

    Article  ADS  Google Scholar 

  106. Nascimbène, S., Navon, N., Jiang, K., Tarruell, L., Teichmann, M., McKeever, J., Chevy, F., Salomon, C.: Phys. Rev. Lett. 103(17), 170402 (2009)

    Article  ADS  Google Scholar 

  107. Bruun G., Massignan, P.: Phys. Rev. Lett. 105 (2010)

    Google Scholar 

  108. Pines, D., Nozières, P.: The Theory of Quantum Liquids, vol.I: Normal Fermi Liquids. WA Benjamin, New York (1966)

    Google Scholar 

  109. Luttinger, J.M., Ward, J.: Phys. Rev. 118(5), 1417–1427 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. Mora, C., Chevy, F.: Phys. Rev. Lett. 104(23), 230402 (2010)

    Article  ADS  Google Scholar 

  111. Yu, Z., Zöllner, S., Pethick, C.J.: Phys. Rev. Lett. 105(18), 188901 (2010)

    Article  ADS  Google Scholar 

  112. Bertaina, G., Giorgini, S.: Phys. Rev. A 79(1), 013616 (2009)

    Article  ADS  Google Scholar 

  113. Bruun, G.M., Recati, A., Pethick, C.J., Smith, H., Stringari, S.: Phys. Rev. Lett. 100(24), 240406 (2008)

    Article  ADS  Google Scholar 

  114. Chevy, F., Nascimbène, S., Navon, N., Kaijun, J., Lobo, C., Salomon, S.: J. Phys.: Conf. Ser. 264, 012012 (2011)

    Article  ADS  Google Scholar 

  115. Abrikosov, A.A., Khalatnikov, I.M.: Rep. Prog. Phys 22, 329 (1959)

    Article  ADS  Google Scholar 

  116. Cao, C., Elliott, E., Joseph, J., Wu, H., Petricka, J., Schäfer, T., Thomas, J.E.: Science 331(6013), 58 (2011)

    Article  ADS  Google Scholar 

  117. Nascimbène S., Navon N., Pilati S., Chevy F., Giorgini S., Georges A., Salomon, C.: A new Fermi liquid: the normal phase of a strongly interacting gas of cold atoms. (2010) Arxiv preprint arXiv:1012.4664

    Google Scholar 

  118. Burovski, E., Prokof’ev, N., Svistunov, B., Troyer, M.: Phys. Rev. Lett. 96(16), 160402 (2006)

    Article  ADS  Google Scholar 

  119. Goulko, O., Wingate, M.: Phys. Rev. A 82(5), 053621 (2010)

    Article  ADS  Google Scholar 

  120. Riedel, E.K.: Phys. Rev. Lett. 28(11), 675–678 (1972)

    Article  ADS  Google Scholar 

  121. Riedel, E.K., Wegner, F.J.: Phys. Rev. Lett. 29(6), 349–352 (1972)

    Article  ADS  Google Scholar 

  122. Wegner, F.J., Riedel, E.K.: Phys. Rev. B 7(1), 248–256 (1973)

    Article  ADS  Google Scholar 

  123. Parish, M.M., Marchetti, F.M., Lamacraft, A., Simons, B.D.: Nat. Phys. 3(2), 124–128 (2007)

    Article  Google Scholar 

  124. Gubbels, K.B., Stoof, H.T.C.: Phys. Rev. Lett. 100(14), 140407 (2008)

    Article  ADS  Google Scholar 

  125. Shin, Y., Schunck, C.H., Schirotzek, A., Ketterle, W.: Nature 451(4), 689–693 (2008)

    Article  ADS  Google Scholar 

  126. Combescot, R., Mora, C.: Eur. Phys. J. B 28(4), 397–406 (2002)

    Article  ADS  Google Scholar 

  127. Capone, M., Castellani, C., Grilli, M.: Phys. Rev. Lett. 88(12), 126403 (2002)

    Article  ADS  Google Scholar 

  128. Toschi, A., Barone, P., Capone, M., Castellani, C.: New J. Phys. 7, 7 (2005)

    Article  ADS  Google Scholar 

  129. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C.: Rev. Mod. Phys. 79(1), 353–419 (2007)

    Google Scholar 

  130. Tsuchiya, S., Watanabe, R., Ohashi, Y.: Phys. Rev. A 80(3), 33613 (2009)

    Google Scholar 

  131. Perali, A., Pieri, P., Strinati, G.C., Castellani, C.: Phys. Rev. B 66(2), 024510 (2002)

    Article  ADS  Google Scholar 

  132. Chen, Q., Stajic, J., Tan, S., Levin, K.: Phys. Rep. 412(1), 1–88 (2005)

    Article  ADS  Google Scholar 

  133. Dao, T.L., Ferrero, M., Georges, A., Capone, M., Parcollet, O.: Phys. Rev. Lett. 101(23), 236405 (2008)

    Article  ADS  Google Scholar 

  134. Sommer, A., Ku, M., Roati, G., Zwierlein, M.W.: Nature 472, 201–204 (2011)

    Article  ADS  Google Scholar 

  135. Ho, T.L., Mueller, E.J.: Phys. Rev. Lett. 92(16), 160404 (2004)

    Article  ADS  Google Scholar 

  136. Kraemer, T., Mark, M., Waldburger, P., Danzl, J.G., Chin, C., Engeser, B., Lange, A.D., Pilch, K., Jaakkola, A., Nägerl, H.C. et al.: Nature 440(7082), 315–318 (2006)

    Article  ADS  Google Scholar 

  137. Braaten, E., Hammer, H.W.: Ann. Phys. 322(1), 120–163 (2007)

    Article  ADS  MATH  Google Scholar 

  138. Liu, X.J., Hu, H., Drummond, P.D.: Phys. Rev. Lett. 102(16), 160401 (2009)

    Article  ADS  Google Scholar 

  139. Rupak, G.: Phys. Rev. Lett. 98(9), 90403 (2007)

    Article  ADS  Google Scholar 

  140. Bulgac, A., Drut, J.E., Magierski, P.: Phys. Rev. Lett. 96(9), 90404 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Sylvain nascimbène, Nir Navon, and Kaijun Jiang for important contributions to this work. We thank Nir Navon and Xavier Leyronas for reading the manuscript and for interesting comments. We acknowledge support from ESF (FerMix), SCALA, Région Ile de France (IFRAF), ERC Ferlodim and Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chevy .

Editor information

Editors and Affiliations

Appendix

Appendix

11.1.1 Spin Susceptibility of a Gapped System at Zero Temperature

Let us consider a system containing \(N_\uparrow\) and \(N_\downarrow\) spin up and spin down particles. We define \(M\,{=}\,N_\uparrow-N_\downarrow\) and \(N\,{=}\,N_\uparrow+N_\downarrow\) the polarization and the total atom number and we denote E(N,M) as the energy of the system. If one assumes that the energy can be expanded in M then by symmetry the linear term vanishes and one gets \(E(N,M)\,{=}\,E(N,0)+M^2/2\chi+...\) (see also below). With this definition, \(\chi\) is then the spin susceptibility of the system. Indeed, adding a magnetic field h contributes to a \(-hM\) term to the energy and we immediately see that the energy minimum is shifted from \(M\,{=}\,0\) to \(M\,{=}\,\chi h.\)

This argument is no longer true in the case of a gapped system. Indeed, polarizing a spin balanced system costs the binding energy of the broken pairs. This definition applies to any system composed of spin-singlet dimers, from a fermionic superfluid composed of Cooper pairs, or a pure gas of uncondensed molecules, and leads to the following leading order expansion

$$ E(N,M)\,{=}\,E(N,0)+|M|\Updelta+... $$

To evaluate the spin susceptibility, we add as above a magnetic field h changing the energy into \(E-h M.\) We see that for \(h\,{\neq}\,0,\) the potential is tilted but the energy minimum stays located at \(M\,{=}\,0,\) as long as \(|h|\,{<}\,\Updelta\) corresponding to the Pauli limit below which pairing can resist spin polarization (see Fig.  11.13).

Fig.  11.13
figure 13

Energy E of a gapped system versus spin polarization M. Solid line: the spin polarizing field h is 0 and the slope of the energy is given by the gap \(\Updelta.\) Dotted line: non zero spin polarizing field. The energy is tilted but as long as \(|h|\,{<}\,\Updelta,\) the ground state remains unpolarized

11.1.2 Fermi Liquid Theory in the Grand Canonical Ensemble

At the macroscopic level, the Fermi liquid is characterized by three properties

  1. 1.

    The specific heat\(C_V\)varies linearly with temperature and\(C_V/C_V^0\,{=}\,m^*/m,\)where\(C_V^0\)is the specific heat of the ideal gas. By definition, the heat transfer \(\delta Q\) at constant volume and atom number reads \(\delta Q\,{=}\,C_V dT+h dV,\) and we thus have

    $$ dS\,{=}\,{\frac{\delta Q}{T}}\,{=}\,{\frac{C_V}{T}}dT+{\frac{h}{T}}dV. $$
    (11.58)

    Using the thermodynamic identity \(dF\,{=}\,-SdT-PdV+\sum_\sigma \mu_\sigma dN_\sigma\) for the free energy F, we have finally

    $$ C_V\,{=}\,-T\left({\frac{\partial^2 F}{\partial T^2}}\right). $$
    (11.59)
  2. 2.

    The compressibility of the system is finite at T = 0. We have by definition of pressure

    $$ P\,{=}\,-\left({\frac{\partial F}{\partial V}}\right)_{T,N,M}, $$
    (11.60)

    hence for a compression at constant temperature and atom number

    $$ dP\,{=}\,-\left({\frac{\partial^2 F}{\partial V^2}}\right)_{T,N,M}dV $$
    (11.61)

    From the definition of the isotherme compressibility, we have

    $$ \kappa_{T}\,{=}\,{\frac{-1}{V}}\left({\frac{\partial V}{\partial P}}\right)_{T,N,M}, $$
    (11.62)

    and we have finally

    $$ \kappa_{T}^{-1}\,{=}\,V\left({\frac{\partial^2 F}{\partial V^2}}\right)_{T,N,M}. $$
    (11.63)
  3. 3.

    The magnetic susceptibility is finite at zero temperature. This calculation is very similar to the previous one. Indeed, we have

    $$ h\,{=}\,\left({\frac{\partial F}{\partial M}}\right)_{N,T,V}, $$
    (11.64)

    with \(M\,{=}\,(N_\uparrow-N_\downarrow)/2\) and \(N\,{=}\,(N_\uparrow+N_\downarrow)/2.\) Polarizing the system at constant atom number, we have

    $$ dh\,{=}\,\left({\frac{\partial^2 F}{\partial M^2}}\right)_{N,V,T}dM. $$
    (11.65)

    Defining the susceptibility of the gas has

    $$ \chi\,{=}\,{\frac{1}{V}}\left({\frac{\partial M}{\partial h}}\right)_{N,T,V}, $$
    (11.66)

    and we have the identity

    $$ \chi^{-1}\,{=}\,V\left({\frac{\partial^2 F}{\partial M^2}}\right) $$
    (11.67)

At low temperature and spin imbalance, we can expand the free energy with respect to T and M. To second order, we have

$$\begin{aligned}[b] F(T,V,N,M)\,{=}\, & F_0(T,V,N)+T\left({\frac{\partial F}{\partial T}}\right)_0+M\left({\frac{\partial F}{\partial M}}\right)_0\\[4pt] & +{\frac{T^2}{2}}\left({\frac{\partial^2 F}{\partial T^2}}\right)_0+{\frac{M^2}{2}}\left({\frac{\partial^2 F}{\partial M^2}}\right)_0+MT\left({\frac{\partial^2 F}{\partial T\partial M}}\right)_0\!{.}\\ \quad \end{aligned}$$
(11.68)

According to the Third Law of Thermodynamics, entropy is zero at zero temperature. From the previous expansion, we thus have

$$ S\,{=}\,-\left({\frac{\partial F}{\partial T}}\right)_{V,N,M}\,{=}\,\left({\frac{\partial F}{\partial T}}\right)_0+T\left({\frac{\partial^2 F}{\partial T^2}}\right)_0+M\left({\frac{\partial^2 F}{\partial T\partial M}}\right)_0\,{=}\,0. $$
(11.69)

We then obtain readily

$$ \left({\frac{\partial F}{\partial T}}\right)_0\,{=}\,\left({\frac{\partial^2 F}{\partial T\partial M}}\right)_0\,{=}\,0, $$
(11.70)

and thus

$$ F(T,V,N,M)\,{=}\,F_0(T,V,N)+{\frac{T^2}{2}}\left({\frac{\partial^2 F}{\partial T^2}}\right)_0+{\frac{M^2}{2}}\left({\frac{\partial^2 F}{\partial M^2}}\right)_0. $$
(11.71)

Let us set \(C_V\,{=}\,V\gamma T\) at low temperature. According to the previous discussion we therefore have

$$ F\,{=}\,F_0-{\frac{\gamma T^2}{2}}+{\frac{M^2}{2\chi}}+... $$
(11.72)

Let us now consider the grand potential \(\Upomega\,{=}\,F-\mu N-h M.\) We have using the relation \(h\,{=}\,\chi M\) in the weakly polarized limit

$$ \Upomega(\mu,h,T,V)\,{=}\,F_0-\mu N-V{\frac{\gamma T^2}{2}}-V{\frac{\chi h^2}{2}}, $$
(11.73)

which can be recast as

$$ \Upomega(\mu,h,T,V)\,{=}\,\Upomega_0(\mu,V)-\left({\frac{\gamma T^2}{2}}+{\frac{\chi h^2}{2}}\right)V, $$
(11.74)

where \(\Upomega_0\) is the value of the grand potential for \(T\,{=}\,h\,{=}\,0.\) Let us introduce \(P_1 (\mu)\) the pressure of a single species Fermi gas at zero temperature. We then have using \(\Upomega\,{=}\,-PV\)

$$ {\frac{P}{P_1}}\,{=}\,{\frac{P_0(\mu)}{P_1(\mu)}}\left[1+{\frac{\gamma T^2}{2P_0}}+{\frac{\chi h^2}{2P_0}}\right]. $$
(11.75)

11.1.3 Susceptibility of a Molecular Gas

Let us consider a mixture of spin-1/2 fermions in the BEC side of a Feshbach resonance and in this regime \(a\,{>}\,0,\) so two atoms can form a stable dimer of energy \(\hbar^2/ma^2.\) Let us consider the free energy \(F(N_\uparrow,N_\downarrow,N_b).\) Since the formation of \(\delta N_b\) dimers requires the disappearance of a same number of spin-up and down atoms, the free energy varies at fixed temperature as

$$ \delta F\,{=}\,\left(\partial_{N_b}F-\partial_{N_\uparrow}F-\partial_{N_\downarrow}F\right)\delta N_b. $$
(11.76)

At equilibrium, \(\delta F\,{=}\,0\) to first order, yielding the condition

$$\mu_b\,{=}\,\mu_\uparrow+\mu_\downarrow\,{=}\,2\bar\mu, $$
(11.77)

where as before \(\bar\mu\,{=}\,(\mu_\uparrow+\mu_\downarrow)/2.\) Let us consider the BEC limit, where the binding energy of the dimers is \(-\hbar^2/ma^2\) and the atom-atom, atom-dimer and dimer-dimer interactions are negligible. In this case we can describe the system as a mixture of ideal gases. Moreover, if we work above the quantum degenerate regime, we can use classical thermodynamics to describe the system. In this regime the partition function of an ensemble of N non-interacting particles described by a dispersion relation \(E(p)\,{=}\,E_\alpha^0+p^2/2m_\alpha,\) where the \(\alpha\) encapsulates the nature and the internal state of the particle, is given by

$$ Z\,{=}\,{\frac{1}{N!}}\left[\int {\frac{Vd^3\user2{p}}{(2\pi\hbar)^3}}e^{-\beta E(p)}\right]\,{=}\,{\frac{1}{N!}}\left({\frac{Ve^{-\beta E_0}}{\lambda_{\rm th}^3}}\right)^N, $$
(11.78)

where \(\lambda_{\rm th}\,{=}\,\sqrt{2\pi\hbar^2/m_\alpha k_B T}\) is the thermal wavelength and the factor \(N!\) was introduced to take into account the classical indiscernibility of the particles. Footnote 8 We deduce the chemical potential from the definition \(\mu\,{=}\,\partial_N F\) with \(F\,{=}\,-k_B T\ln Z.\) After a straightforward calculation we obtain

$$ \mu\,{=}\,E_0+k_B T\left(\ln (n\lambda_{\rm th}^3)-1\right). $$
(11.79)

for the gases of atom \((m_\alpha\,{=}\,m, E_\alpha^0\,{=}\,0)\) and molecules \((m_\alpha\,{=}\,2m\) and \(E_\alpha^0\,{=}\,-\hbar^2/ma^2),\) we have

$$ \mu_\sigma\,{=}\,k_BT\left[\ln\left(n_\sigma\lambda_T^3\right)-1\right]$$
(11.80)
$$ \mu_b\,{=}\,-{\frac{\hbar^2}{ma^2}}+k_BT\left[\ln\left(n_\sigma\lambda_T^3/2^{3/2}\right)-1\right], $$
(11.81)

where \(\lambda_{\rm th}\) is the thermal wavelength of the atoms.

Let us consider first the balanced case, \(n_\uparrow\,{=}\,n_\downarrow\,{=}\,n_a.\) Writing the condition (11.75), we recover the law of mass action

$$ {\frac{n^2_a}{n_b}}\,{=}\,{\frac{e^{-T^*/T}}{2^{3/2}\lambda_{\rm th}^3}}, $$
(11.82)

with \(k_BT^*\,{=}\,\hbar^2/ma^2.\) As expected, we see that this ratio goes to zero when the temperature becomes much smaller than \(T^*.\) In this limit, we have in particular \(N\,{=}\, N_\uparrow + N_\downarrow + 2N_b \sim 2N_b,\) hence

$$ n^2_a\sim {\frac{2n e^{-T^*/T}}{2^{3/2}\lambda_{\rm th}^3}}. $$
(11.83)

Let us now consider the imbalanced case. Using Eq.  11.78, we see that

$$ h\,{=}\,{\frac{k_B T}{2}}\ln\left({\frac{n_\uparrow}{n_\downarrow}}\right). $$
(11.84)

Inverting this relation, we see that when h is small we have

$$ n_\uparrow-n_\downarrow\,{=}\,{\frac{2n_a }{k_{\rm B}T}}h, $$
(11.85)

where \(n_a\) is given by (11.81) and is exponentially small in the low temperature limit \(T/T^*\ll 1.\) The spin susceptibility is thus given by

$$ \chi\,{=}\,{\frac{1}{V}}\left({\frac{\partial M}{\partial h}}\right)_N\propto {\frac{e^{-T^*/2T}}{T}}. $$
(11.86)

In the opposite limit \(T/T^*\gg 1,\) we have \(n_b\ll n_a\) hence \(n_a\sim n/2\) and

$$ \chi\propto {\frac{1}{T}}, $$
(11.87)

where we recover Curie’s law.

11.1.4 Virial Expansion

Let us consider the Grand canonical partition function of a many-body system

$$ Z\,{=}\,\sum_{\alpha\in {\mathcal H}} e^{-\beta (E_\alpha-\mu N_\alpha)}, $$

where the \(|\alpha\rangle\) are the eigenstates of the hamiltonian H and span the whole grand canonical Hilbert space \(\mathcal H.\) Let us now decompose this sum over Fock states of fixed atom number N. We thus have

$$ Z\,{=}\,\sum_N \left(e^{\beta\mu N}\sum_{\alpha\in {\mathcal H}_N} e^{-\beta (E_\alpha)}\right). $$

We see in this case that the partition function can be expanded with the fugacity \(z\,{=}\,\exp (\beta \mu),\) a result known as the Virial expansion. The grand-potential \(\Upomega\,{=} \,-PV\,{=}\,-k_BT\ln Z\) is also analytical with fugacity z and can therefore be expanded as

$$ P(\mu,T)\,{=}\,\sum_{n\ge 1} b_n z^n $$
(11.88)

where \(b_n\) can be obtained from the knowledge of the spectrum of the Hamiltonian at a number \(n^{\prime}\le n\)0 of particles.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chevy, F., Salomon, C. (2012). Thermodynamics of Fermi Gases. In: Zwerger, W. (eds) The BCS-BEC Crossover and the Unitary Fermi Gas. Lecture Notes in Physics, vol 836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21978-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21978-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21977-1

  • Online ISBN: 978-3-642-21978-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics