Skip to main content

Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity

  • Chapter
  • First Online:
The BCS-BEC Crossover and the Unitary Fermi Gas

Part of the book series: Lecture Notes in Physics ((LNP,volume 836))

Abstract

We describe recent attempts to extract the shear viscosity of the dilute Fermi gas at unitarity from experiments involving scaling flows. A scaling flow is a solution of the hydrodynamic equations that preserves the shape of the density distribution. The scaling flows that have been explored in the laboratory kflccare the transverse expansion from a deformed trap (“elliptic flow”), the expansion from a rotating trap, and collective oscillations. We discuss advantages and disadvantages of the different experiments, and point to improvements of the theoretical analysis that are needed in order to achieve definitive results. A conservative bound based on the current data is that the minimum of the shear viscosity to entropy density ration is \(\eta/s\leq 0.5 \hbar/k_B.\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloch, I., Dalibard J., Zwerger, W.: Rev. Mod. Phys. 80, 885 (2008) [arXiv:0704.3011]

    Google Scholar 

  2. Giorgini, S., Pitaevskii, L.P., Stringari, S.: Rev. Mod. Phys. 80, 1215 (2008) [arXiv:0706.3360]

    Google Scholar 

  3. Schäfer, T., Teaney, D.: Rept. Prog. Phys. 72, 126001 (2009) [arXiv:0904.3107 [hep-ph]]

    Google Scholar 

  4. Danielewicz, P., Gyulassy, M.: Phys. Rev. D 31:53 (1985)

    Article  ADS  Google Scholar 

  5. Policastro, G., Son, D.T., Starinets, A.O.: Phys. Rev. Lett. 87, 081601 (2001) [arXiv:hep-th/ 0104066]

    Google Scholar 

  6. Kovtun, P., Son, D.T., Starinets, A.O.: Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/ 0405231]

    Google Scholar 

  7. O’Hara, K.M., Hemmer, S.L., Gehm, M.E., Granade, S.R., Thomas, J.E.: Science. 298, 2179 (2002) [cond-mat/0212463]

    Google Scholar 

  8. Kinast, J., Hemmer, S.L., Gehm, M.E., Turlapov, A., Thomas, J.E.: Phys. Rev. Lett. 92, 150402 (2004) [cond-mat/0403540]

    Google Scholar 

  9. Kinast, J., Turlapov, A., Thomas, J.E.: Phys. Rev. A 70, 051401(R) (2004) [cond-mat/0408634]

    Google Scholar 

  10. Kinast, J., Turlapov, A., Thomas, J.E.: Phys. Rev. Lett. 94, 170404 (2005) [cond-mat/0502507]

    Google Scholar 

  11. Altmeyer, A., Riedl, S., Kohstall, C., Wright, M., Geursen, R., Bartenstein, M., Chin, C., Hecker Denschlag, J., Grimm, R.: Phys. Rev. Lett. 98, 040401 (2007) [cond-mat/0609390]

    Google Scholar 

  12. Altmeyer, A., Riedl, S., Kohstall, C., Wright, M., Hecker Denschlag, J., Grimm, R.: Phys. Rev. Lett. 98, 103602 (2007) [cond-mat/0611285]

    Google Scholar 

  13. Wright, M.J., Riedl, S., Altmeyer, A., Kohstall, C., Sanchez Guajardo, E.R., Hecker Denschlag, J., Grimm, R.: Phys. Rev. Lett. 99, 150403 (2007) [arXiv:0707.3593[cond-mat.other]]

    Google Scholar 

  14. Clancy, B., Luo, L., Thomas, J.E.: Phys. Rev. Lett. 99, 140401 (2007) [arXiv:0705.2782 [cond-mat.other]]

    Google Scholar 

  15. Riedl, S., Sanchez Guajardo, E.R., Kohstall, C., Altmeyer, A., Wright, M.J., Hecker Denschlag, J., Grimm, R., Bruun, G.M., Smith, H. Phys. Rev. A 78, 053609 (2008) [arXiv:0809.1814[cond-mat.other]]

    Google Scholar 

  16. Carlson, J., Reddy, S.: Phys. Rev. Lett. 95, 060401 (2005) [cond-mat/0503256]

    Google Scholar 

  17. Bulgac, A., Drut, JE., Magierski, P.: Phys. Rev. A 78, 023625 (2008) [arXiv:0803.3238 [cond-mat.stat-mech]]

    Google Scholar 

  18. Nascimbene, S., Navon, N., Jiang, K., Chevy, F., Salomon, C. [arXiv:0911.0747[cond-mat. quant-gas]]

    Google Scholar 

  19. Menotti, C., Pedri, P., Stringari, S.: Phys. Rev. Lett. 89, 250402 (2002) [cond-mat/0208150]

    Google Scholar 

  20. Thomas, J.E., Kinast, J., Turlapov, A.: Phys. Rev. Lett. 95, 120402 (2005) [cond-mat/0503620]

    Google Scholar 

  21. Son, D.T.: Phys. Rev. Lett. 98, 020604 (2007) [arXiv:cond-mat/0511721]

    Google Scholar 

  22. Luo, L., Thomas, J.E.: J. Low Temp. Phys. 154, 1 (2009) [arXiv:0811.1159[cond-mat.other]]

    Google Scholar 

  23. Rupak, G., Schäfer, T.: Phys. Rev. A 76, 053607 (2007) [arXiv:0707.1520 [cond-mat.other]]

    Google Scholar 

  24. Bruun, G.M., Smith, H.: Phys. Rev. A 72, 043605 (2005) [cond-mat/0504734]

    Google Scholar 

  25. Bruun, G.M., Smith, H.: Phys. Rev. A 75, 043612 (2007) [cond-mat/0612460]

    Google Scholar 

  26. Garcia-Colina, L.S., Velascoa, R.M., Uribea, F.J.: Phys. Rep. 465, 149 (2008)

    Google Scholar 

  27. Nikuni, T., Griffin, A.: Phys. Rev. A 69, 023604 (2004) [cond-mat/0309269]

    Google Scholar 

  28. Griffin, A., Nikuni, T., Zaremba, E.: Bose-condensed gases at finite temperature. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  29. Romatschke, P.: Int. J. Mod. Phys. E 19, 1–53 (2010) [arXiv:0902.3663 [hep-ph]]

    Google Scholar 

  30. Bruun, G.M., Smith, H.: Phys. Rev. A 76, 045602 (2007) [arXiv:0709.1617]

    Google Scholar 

  31. Edwards, M., Clark, C.W., Pedri, P., Pitaevskii, L., Stringari, S.: Phys. Rev. Lett. 88, 070405 (2002)

    Google Scholar 

  32. Thomas, J.E.: Nucl. Phys. A 830, 665C–672C (2009) [arXiv:0907.0140v2 [cond-mat.quant-gas]]

    Google Scholar 

  33. Clancy, B.: Ph.D. thesis, Duke University (2008)

    Google Scholar 

  34. Heiselberg, H.: Phys. Rev. Lett. 93, 040402 (2004) [cond-mat/0403041]

    Google Scholar 

  35. Stringari, S.: Europhys. Lett. 65, 749 (2004) [cond-mat/0312614]

    Google Scholar 

  36. Bulgac, A., Bertsch, G.F.: Phys. Rev. Lett. 94, 070401 (2005) [cond-mat/0404687]

    Google Scholar 

  37. Schäfer, T.: Phys. Rev. A 76, 063618 (2007) [arXiv:cond-mat/0701251]

    Google Scholar 

  38. Gelman, B.A., Shuryak, E.V., Zahed, I.: Phys. Rev. A 72, 043601 (2005) [nucl-th/0410067]

    Google Scholar 

  39. Turlapov, A., Kinast, J., Clancy, B., Luo, L., Joseph, J., Thomas, J.E.: J. Low Temp. Phys. 150, 567 (2008) [arXiv:0707.2574]

    Google Scholar 

  40. Cao, C., Elliott, E., Joseph, J., Wu, H., Petricka, J., Schäfer, T., Thomas, J.E.: Science 331, 5 (2011) [arXiv:1007.2625 [cond-mat.quant-gas]]

    Google Scholar 

  41. Schäfer, T.: Phys. Rev. A 82, 063629 (2010) [arXiv:1008.3876 [cond-mat.quant-gas]]

    Google Scholar 

Download references

Acknowledgments

This work was supported in parts by the US Department of Energy grant DE-FG02-03ER41260. We are grateful to John Thomas for many useful discussions, and to Jiunn-Wei Chen for pointing out an error in an earlier version of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schäfer, T., Chafin, C. (2012). Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity. In: Zwerger, W. (eds) The BCS-BEC Crossover and the Unitary Fermi Gas. Lecture Notes in Physics, vol 836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21978-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21978-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21977-1

  • Online ISBN: 978-3-642-21978-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics