Skip to main content

Contribution to Thermal Properties of Multi-Component Porous Ceramic Materials Used in High-Temperature Processes in the Foundry Industry

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 13))

Abstract

This chapter presents a practical approach to the identification and interpretation of phenomena in multi-component ceramic granular porous materials (called mould sands) used as the moulds to cast metal alloys at temperatures above 1,300°C. The methodologies chosen for experimental (using artificial and technological heat sources) and numerical studies (using the inverse solution) of these materials and their application in database of simulation systems for virtualization of casting processes are described. The essence of substitute coefficients of mould thermal parameters and the notion of thermal history of heating are explained. The experiment shows the sensitivity of the simulation results to changes in the materials’ coefficients and also that validation is required for the proper use of simulation systems in foundries. Examples of estimating thermal characteristic for the materials chosen with—middle and high thermal instability are presented. Furthermore, the thermo-mechanical parameters of these porous thermolabile materials in original Hot Distortion® tests are signalled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ignaszak, Z.: Virtual Prototyping in the Foundry. Data Bases and Validation (in Polish). Edition of Poznan University of Technology, Poznan (2002)

    Google Scholar 

  2. Handbook of Thermophysical Properties (ed.) Macmillan Comp., New York (1961)

    Google Scholar 

  3. Ignaszak, Z.: Thermophysical Properties of Mould Materials in Aspect of Solidification Control of Simulation Process (in Polish). Poznan University of Technology, Rozprawy nr 211, Poznan (1989)

    Google Scholar 

  4. Ignaszak, Z.: Study on Data Base of Modeling Concerning Casting Phenomena in Cast-Iron-Mould Simulation Systems, Engineering Materials, vol. 457, pp. 305–311. Trans Tech Publications, Zürich (2011)

    Google Scholar 

  5. Fiedler, T., Belova, I.V., Öchsner, A., Murch, G.E.: Application of the LMC Method to Heat Conduction Problems: Overview on Recent Developments DSL (2010)

    Google Scholar 

  6. Ignaszak, Z., Popielarski, P.: Heat Transfer During Hot Distortion Test of Ceramic Porous Material Bonded by Various Resins, Defect and Diffusion Forum, vols. 283–286, pp. 382–387, Trans Tech Publications, Zürich (2009)

    Google Scholar 

  7. Ignaszak, Z., Popielarski, P.: Problem of the Variability of Substitute Thermo-Physical Properties for Heat Transfer Modelling in Iso-exo Porous Materials, Defect and Diffusion Forum, vols. 283–286 pp. 376–381 Trans Tech Publications, Zürich (2009)

    Google Scholar 

  8. Magmasoft user’s manual, www.magmasoft.de

  9. NovaFlow&Solid user’s manual, www.novacast.se

  10. Ignaszak, Z.: La conductivité thermique substitutive du moule. Une nouvelle méthode de mesure pour la simulation de la solidification des pieces. Proceedings of 58th World Foundry Congress, Official Exchange paper, Krakow, (1991) and Fonderie—Fondeur d’Aujourd’hui 121, janvier 1993

    Google Scholar 

  11. Ignaszak, Z.: Substitute thermal conductivity coefficient for multi-component ceramic materials. Proceedings of International Conference on Advances in Materials and Processing Technologies, AMPT’01 Madrid, September 2001

    Google Scholar 

  12. Schmidt, P.: Materials Science and Engineering, Al 73 (1993)

    Google Scholar 

  13. Calcosoft user’s manual, www.esi-group.com

  14. Sciama, G.: Sensibilité des résultats des simulations de solidification aux variations de caractéristiques thermiques, Fonderie Fondeur d’Aujourd’hui, 133, mars 1994

    Google Scholar 

  15. Overfeld, T.: Sensitivity of a steel plate solidification model to uncertainties in thermophysical properties. Conference on Modeling of Casting, Welding and Advanced Solidification Processes, VI, Floride, USA (1993)

    Google Scholar 

  16. Minikawa, S., et al.: Metall. Trans. B, 16B (1985)

    Google Scholar 

  17. Ignaszak, Z.: Simulation model sensivity to quality of material properties. Solidif. Metals Alloys 1, 25–36 (1999). Book no 40

    Google Scholar 

  18. Farre, S.: Private communication during Symposium Computer Aided Design (Virtual Prototyping) in the Foundry Using NovaFlow & Solid System, Poznan, 2 April 2003

    Google Scholar 

  19. Kubo, K., et al.: Proceedings of 50th World Foundry Congress, Official Exchange paper, Cairo (1983)

    Google Scholar 

  20. Zak, E.M.: Liteinoe proizvodstvo (russish Foundry J.), 1 (1986)

    Google Scholar 

  21. Rappaz, M., et al.: Proceedings of Conference Casting, Welding and Advanced Solidification Processes, London (1995)

    Google Scholar 

  22. Hueber, N., Ignaszak, Z.: Water effects and thermal behavior of a sand, thermal properties identification by optimization tools. Proceedings of 8th Conference Modelling of Casting, Welding and Advanced Solidification Processes, San Diego (USA) (1998)

    Google Scholar 

  23. Ignaszak, Z.: Thermophysical parameters of insulating materials applied to design of casting feeding and to simulation of its solidification (in Polish). Solidif. Metals Alloys 1, 125–131 (1999). Book No. 40

    Google Scholar 

  24. Drezet, J.M., Rappaz, M., Grün, G., Gremaud, M.: Determination of thermophysical properties and boundry conditions of direct chill-cast aluminium alloys using inverse methods. Metall. Mater. Trans. 31A, 1627–1634 (2000)

    Article  CAS  Google Scholar 

  25. Rappaz, M., Desbiolles, J.L., Drezet, J.M., Gandin, Ch.A., Jacot, A., Thévoz, Ph.: Application of inverse methods to the estimation of boundary conditions and properties. Proceedings 7th International Conference Modelling of Casting, Welding and Advanced Solidification Processes, The Minerals, London, Metals & Materials Society (1995)

    Google Scholar 

  26. Ignaszak, Z.: Energetic and dynamic validation of thermal models in practice of casting technology simulation. Proceedings of the International Conference on Advances in Materials and Processing Technologies (AMPT2003), Dublin, 8–11 July 2003

    Google Scholar 

  27. Wolff, H., Engler, S., Schrey, A., Wolf, G.: Wärmetransport I Formen bei der Erstarrung und Abkühlung von Mittel- und Grossguss aus Gusseisen, Giessereiforschung, no 4 (2002)

    Google Scholar 

  28. Drotlew, A., Ignaszak, Z., Bieńko, G., Popielarski, P.: Identyfication of thermo phisical properties of moulding Sand with micro-cobler addition. Arch. Founry 4(14), 132–137 (2004)

    Google Scholar 

  29. Ignaszak, Z., Graczyk, L., Popielarski, P.: Experimental—Simulating method of over most zone identification in the mould. Arch. Founry 6(22), 216–223 (2006)

    CAS  Google Scholar 

  30. Ignaszak, Z., Popielarski, P.: Problem of the Variability of Substitute Thermo-Physical Properties for Heat Transfer Modelling in Iso-exo Porous Materials, Defect and Diffusion Forum, vols. 283–286, pp. 376–381. Trans Tech Publications, Zürich (2009)

    Google Scholar 

  31. Ignaszak, Z., Popielarski, P.: Problems of Heat Source Modeling In Iso–exothermic Materials Used as Riser Sleeves in Foundry. Materials Science Forum, vols. 514-516, pp. s1438–1442 May 2006, Trans Tech Publications (2006)

    Google Scholar 

  32. Ignaszak, Z., Popielarski, P.: Heat Transfer During Hot Distortion Test of Ceramic Porous Material Bonded by Various Resins, Defect and Diffusion Forum, vols. 283–286, pp. 382–387, Trans Tech Publications, Zürich (2009)

    Google Scholar 

  33. Ramrattan S.N., et al.: Thermal Distortion in Process Control of Chemically-Bondes Sands, AFS Transactions, paper no 152, pp.152–165 (1997)

    Google Scholar 

  34. BCIRA Hot distortion tester. Operating instructions (1975)

    Google Scholar 

  35. Morgan, A.D., Fasham, E.W.: A new hot distortion tester for chemically bonded sands. Report of BCIRA (1974)

    Google Scholar 

  36. Information on http://www.multiserw-morek.pl/pl/indexpl.htm

  37. Jakubski, J., Dobosz, St.M.: Analysis of thermal deformation of core sands using apparatus DMA, Archives of Foundry. Nr 9 vol. 3, pp. 246–251 (2003)

    Google Scholar 

  38. Comsol, Comsol Multiphisycs 3.4 User’s Guide, Comsol AB (2007)

    Google Scholar 

  39. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vols. 1–3, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  40. Ignaszak, Z., Popielarski, P., Strek, T.: Estimation of coupled thermo-physical and thermo-mechanical properties of porous thermolabile ceramic material using Hot Distortion Plus® test. Proceedings of 6th DSL Conference, Paris, 5–7 July 2010

    Google Scholar 

  41. Landau, L.D., Lifshits, E.M.: Theory of Elasticity. Pergamon Press, London (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ignaszak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ignaszak, Z., Popielarski, P. (2012). Contribution to Thermal Properties of Multi-Component Porous Ceramic Materials Used in High-Temperature Processes in the Foundry Industry. In: Delgado, J. (eds) Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21966-5_8

Download citation

Publish with us

Policies and ethics