Skip to main content

Numerical Methods for Flow in Fractured Porous Media

  • Chapter
  • First Online:
Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 13))

Abstract

We present a numerical technique for the simulation of salinity- as well as thermohaline-driven flows in fractured porous media. In this technique, the fractures are represented by low-dimensional manifolds, on which a low-dimensional variant of the PDEs of variable-density flow is formulated. The latter is obtained from the full-dimensional model by the average-along-the-vertical. The discretization of the resulting coupled system of the full- and low-dimensional PDEs is based on a finite-volume method. This requires a special construction of the discretization grid which can be obtained by the algorithm presented in this work. This technique allows to reconstruct in particular the jumps of the solution at the fracture. Its precision is demonstrated in the numerical comparisons with the results obtained in the simulations where the fractures are represented by the full-dimensional subdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flow in fractured porous media. ESAIM: M2AN. Math. Model. Numer. Anal. 43, 239–275 (2009)

    Article  Google Scholar 

  2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1993)

    Google Scholar 

  3. Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: Parallel solution of partial differential equations with adaptive multigrid methods on unstructured grids. In: Jäger, W., Krause, E. (eds.) High Performance Computing in Science, Engineering, pp. 506–519. Springer, Berlin (2000)

    Google Scholar 

  4. Bear, J.: Dynamics of Fluid in Porous Media. Dover Publications, Inc, New York (1972)

    Google Scholar 

  5. Bear, J.: Hydraulics of Groundwater. Dover Publications, Inc., Mineola (1979)

    Google Scholar 

  6. Bear, J.: On the aquifer’s integrated balance equations. Adv. Water Resour. 1(1), 15–23 (1977)

    Article  Google Scholar 

  7. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht (1990)

    Book  Google Scholar 

  8. Bear, J., Tsang, C.-F., deMarsily, G.: Flow and Contaminant Transport in Fractured Rocks. Academic, New York (1993)

    Google Scholar 

  9. Cai, Z.: On the finite volume element method. Numer. Math. 58(1), 713–735 (1990)

    Article  Google Scholar 

  10. Chew, L.P.: Constrained delaunay triangulation. Algorithmica 4(1), 97–108 (1989)

    Article  Google Scholar 

  11. Diersch, H.-J.-G., Kolditz, O.: Variable-density flow and transport in porous media: approaches and challenges. Wasy Software FEFLOW Finite Element Subsurface flow and Transport Simulation System. Wasy GmbH (2005)

    Google Scholar 

  12. Elder, J.W.: Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29–48 (1967)

    Article  Google Scholar 

  13. Elder, J.W.: Transient convection in a porous medium. J. Fluid Mech. 27, 609–623 (1967)

    Article  Google Scholar 

  14. Fein, E.: Ein Programmpaket zur Modellierung von Dichteströmungen, p. 139. GRS, Braunschweig (1999)

    Google Scholar 

  15. Frolkovič, P.: Consistent velocity approximation for density driven flow and transport. In: Van Keer, R., et al. (eds.) Advanced Computational Methods in Engineering, Part 2: Contributed papers, pp. 603–611. Shaker Publishing, Maastricht (1998)

    Google Scholar 

  16. Frolkovič, P.: Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow. Acta Mathematica Universitatis Comenianae 1(68), 137–157 (1998)

    Google Scholar 

  17. Frolkovič, P., Knabner, P.: Consistent velocity approximations in finite element or volume discretizations of density driven flow. In: Aldama, A.A., et al. (eds.) Computational Methods in Water Resources XI, pp. 93–100. Computational Mechanics Publication, Southhampten (1996)

    Google Scholar 

  18. Graf, T., Therrier, R.: Stable-unstable flow of geothermal fluids in fractured rock. Geofluids 9, 138–152 (2009)

    Article  Google Scholar 

  19. Graf, T., Therrier, R.: Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures. Adv. Water Resour. 28, 1351–1367 (2005)

    Article  CAS  Google Scholar 

  20. Grillo, A., Lampe, M., Wittum, G.: Modelling and simulation of temperature-density-driven flow and thermodiffusion in porous media. J. Porous Media 14(8), 671–690 (2011)

    Article  Google Scholar 

  21. Grillo, A., Lampe, M., Wittum, G.: Three-dimensional simulation of the thermohaline-driven buoyancy of a brine parcel. Comput. Visual. Sci. 13(6), 287–297 (2010)

    Article  CAS  Google Scholar 

  22. Grillo, A., Logashenko, D., Stichel, S., Wittum, G.: Simulation of density-driven flow in fractured porous media. Adv. Water Resour. 33(12), 1494–1507 (2010)

    Article  Google Scholar 

  23. Grisak, G.E., Pickens, J.F.: An analytic solution for solute transport through fractured media with matrix diffusion. J. Hydrol. 52, 47–57 (1981)

    Article  Google Scholar 

  24. Grisak, G.E., Pickens, J.F.: Solute transport through fractured media. Water Resour. Res. 16(4), 719–730 (1980)

    Article  Google Scholar 

  25. Henry, H.R.: Effects of dispersion on salt encroachment in coastal aquifers. Sea water in coastal aquifers, pp. 70–84. USGS Water Supply Paper 1613-c

    Google Scholar 

  26. Holstad, A.: Temperature-driven flow in porous media using a Mixed Finite Element Method and Finite Volume Method. Adv. Water Resour. 24(8), 843–862 (2001)

    Article  Google Scholar 

  27. Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7(3), 169–182 (2003)

    Article  Google Scholar 

  28. Johannsen, K.: The Elder problem—bifurcations and steady state solutions. In: Hassanizadeh, S.M., et al. (eds.), Computational Methods in Water Resources, pp. 485–492 (2002)

    Google Scholar 

  29. Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G.: The saltpool benchmark problem—numerical simulation of saltwater upconing in a porous medium. Adv. Water Resour. 25(3), 335–348 (2002)

    Article  Google Scholar 

  30. Johannsen, K., Oswald, S., Held, R., Kinzelbach, W.: Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium. Adv. Water Resour. 29(11), 1690–1704 (2006)

    Article  Google Scholar 

  31. Karimian, S.M., Schneider, G.E.: Pressure-based control-volume finite element method for flow at all speeds. AIAA J. 33(9), 1611–1618 (1995)

    Article  Google Scholar 

  32. Lang, S., Wittum, G.: Large-scale density-driven flow simulations using parallel unstructured Grid adaptation and local multigrid methods. Concurrency Computat.: Pract. Exper. 17, 1415–1440 (2005)

    Article  Google Scholar 

  33. Malkovsky, V.I., Pek, A.A.: Conditions for the onset of thermal convection of a homogeneous fluid in a vertical fault. Petrology 5, 381–387 (1997)

    Google Scholar 

  34. Martinez-Landa, L., Carrera, J.: A methodology to interpret cross-hole tests in a granite block. J. Hydrol. 325(1–4), 222–240 (2006)

    Article  Google Scholar 

  35. Murphy, H.D.: Convective instabilities in vertical fractures and faults. J. Geophys. Res. 84, 6121–6130 (1979)

    Article  Google Scholar 

  36. Oldenburg, C.M., Pruess, K.: Layered thermohaline convection in hypersaline geothermal systems. Transp. Porous Med. 33, 29–63 (1998)

    Article  CAS  Google Scholar 

  37. Sharp Jr., J.M., Shi, M.: Heterogeneity effects on possible salinity-driven free convection in low-permeability strata. Geofluids 34, 263–274 (2009)

    Article  Google Scholar 

  38. Shewchuk, J.R.: Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery. Eleventh International Meshing Roundtable, pp. 193–204. Sandia National Laboratories, Ithaca (2002)

    Google Scholar 

  39. Shikaze, S.G., Sudicky, E.A., Schwartz, F.W.: Density-dependent solute transport in discretely-fractured geologic media: is prediction possible? J. Contam. Hydrol. 34, 273–291 (1998)

    Article  CAS  Google Scholar 

  40. Simpson, M.J., Clement, T.P.: Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water. Resour. Res. 40 (2004)

    Google Scholar 

  41. Sorek, S., Borisov, V., Yakirevich, A.: A two-dimensional areal model for density dependent flow regime. Trans. Porous Med. 43, 87–105 (2001)

    Article  Google Scholar 

  42. Tang, D.H., Frind, E.O., Sudicky, E.A.: Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour. Res. 17(3), 555–564 (1981)

    Article  Google Scholar 

  43. Voss, C.I., Souza, W.R.: Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 26, 2097–2106 (1987)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Goethe-Universität Frankfurt am Main, Germany, the German Ministry for Economy and Technology (Bundesministerium für, Wirtschaft und Technologie), contract 02E10326, and a fellowship from HIC4FAIR in the LOEWE program of the state Hessen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Grillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stichel, S., Logashenko, D., Grillo, A., Reiter, S., Lampe, M., Wittum, G. (2012). Numerical Methods for Flow in Fractured Porous Media. In: Delgado, J. (eds) Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21966-5_4

Download citation

Publish with us

Policies and ethics