Skip to main content

Abstract

IP6 Kinases (IP6Ks) are important mammalian enzymes involved in inositol phosphates metabolism. Although IP6Ks have not yet been identified in plant chromosomes, there are many clues suggesting that the corresponding gene might be found in plant mtDNA, encrypted and hidden by virtue of editing and/or trans-splicing processes. In this paper, we propose an approach to search for the gene IP6K and applied it on mitocondrial DNA (mtDNA) of plants. To search for the gene IP6K, we applied a technique based on motif discovery by considering the nucleotide sequence corresponding to a specific tag of the IP6K family. Such a tag has been found in all IP6K genes identified up to now, as well as in all genes belonging to the Inositol Polyphosphates Kinases (IPK) superfamily. IPK tag sequence corresponds to the catalytic site of the enzyme and it can be considered as an identifier of IPK genes.

The analysis we conducted provided the relevant negative answer that IP6K does not actually occur in vegetable mtDNA.

Finally, we also validated our approach by searching for the known Ipk1 gene in Arabidopsis thaliana genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database search programs. NAR 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  2. Apostolico, A., Gong, F.-C., Lonardi, S.: Verbumculus and the discovery of unusual words. Journal of Computer Science and Technology 19(1), 22–41 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bennett, M., Onnebo, S.M., Azevedo, C., Saiardi, A.: Inositol pyrophosphates: metabolism and signaling. Cell Mol. Life Sci. 63, 552–564 (2006)

    Article  Google Scholar 

  4. Bertsch, U., Deschermeier, C., Fanick, W., Girkontaite, I., Hillemeier, K., Johnen, H., Weglhner, W., Emmrich, F., Mayr, G.W.: The second messenger binding site of inositol 1,4,5-trisphosphate 3-kinase is centered in the catalytic domain and related to the inositol trisphosphate receptor site. J. Biol. Chem. 275, 1557–1564 (2000)

    Article  Google Scholar 

  5. Bhandari, R., Saiardi, A., Ahmadibeni, Y., Snowman, A.M., Resnick, A.C., Kristiansen, T.Z., Molina, H., Pandey, A., Werner, J.K., Juluri, K.R., Xu, Y., Prestwich, G.D., Parang, K., Snyder, S.H.: Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc. Natl. Acad. Sci. U S A 104(39), 15305–15310 (2007)

    Article  Google Scholar 

  6. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic discovery of patterns in biosequences. Journal of Computational Biology 5(2), 277–304 (1998)

    Article  Google Scholar 

  7. Brearley, C.A., Hanke, D.E.: Inositol phosphates in barley (hordeum vul. l.) aleurone tissue are stereochemically similar to the products of breakdown of insp6 in vitro by wheat-bran phytase. Bioch. J. 318(1), 279–286 (1996)

    Article  Google Scholar 

  8. Communi, D., Takazawa, K., Erneux, C.: Lys-197 and asp-414 are critical residues for binding of atp/mg2+ by rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 291, 811–816 (1993)

    Article  Google Scholar 

  9. Ives, E.B., Nichols, J., Wente, S.R., York, J.D.: Biochemical and functional characterization of inositol 1,3,4,5,6-pentakiphosphate 2-kinases. The Journal of Biological Chemistry 275, 36575–36583 (2000)

    Google Scholar 

  10. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences. Bioinformatics 18, S354–S363 (2002)

    Article  Google Scholar 

  11. Fassetti, F., Greco, G., Terracina, G.: Mining loosely structured motifs from biological data. IEEE Trans. Knowl. Data Eng. 20(11), 1472–1489 (2008)

    Article  Google Scholar 

  12. Flores, S., Smart, C.C.: Abscisic acid-induced changes in inositol metabolism in spirodela polyrrhiza. Planta. 211, 823–832 (2000)

    Article  Google Scholar 

  13. Gilbert, P.: Why genes in pieces? Nature 271(5645), 501 (1978)

    Article  Google Scholar 

  14. Gonzales, B., Banos-Sanz, J.I., Villate, M., Brearley, C.A., Sanz-Aparicio, J.: Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant ipk member with a singular inosite binding site for axial 2-oh recognition. Proc. Natl. Acad. Sci. U S A 107(21), 9608–9613 (2010)

    Article  Google Scholar 

  15. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., Wente, S.R.: A phospholipase c-dependent inositol polyphosphate kinase pathway required for efficient messanger rna export. Science 285, 96–100 (1999)

    Google Scholar 

  16. Verbsky, J.W., Wilson, M.P., Kisseleva, M.V., Majerus, P.W., Wenter, S.R.: The synthesis of inositol hexakiphosphate. characterization of human inositol 1,3,4,5,6-pentakiphosphate 2-kinase. The Journal of Biological Chemistry 277, 31857–31862 (2002)

    Google Scholar 

  17. Larkin, M.A., Blackshields, G., Brown, N.P.: ClustalW and ClustalX version 2. Bioinf. 23(21), 2947–2948 (2007)

    Article  Google Scholar 

  18. Letcher, A.J., Schell, M.J., Irvine, R.F.: Do mammals make all their own inositol hexakisphosphate? Biochem. J. 416(2), 263–270 (2008)

    Article  Google Scholar 

  19. Loomis, W.F., Smith, D.W.: Consensus phylogeny of Dictyostelium. Experientia. 51(12), 1110–1115 (1995)

    Article  Google Scholar 

  20. Luo, H.R., Huang, Y.E., Chen, J.C., Saiardi, A., Iijima, M., Ye, K., Huang, Y., Nagata, E., Devreotes, P., Snyder, S.H.: Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114(5), 559–572 (2003)

    Article  Google Scholar 

  21. Marsan, L., Sagot, M.-F.: Algorithms for extracting structured motifs using a suffix tree with application to promoter and regulatory site consensus identification. J. of Comput. Biol. 7, 345–360 (2000)

    Article  Google Scholar 

  22. Morrison, B.H., Bauer, J.A., Hu, J., Grane, R.W., Ozdemir, A.M., Chawla-Sarkar, M., Gong, B., Almasan, A., Kalvakolanu, D.V., Lindner, D.J.: Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 21(12), 1882–1889 (2002)

    Article  Google Scholar 

  23. Nagata, E., Luo, H.R., Saiardi, A., Bae, B., Suzuki, N., Snyder, S.H.: Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J. Biol. Chem. 280(2), 1634–1640 (2005)

    Article  Google Scholar 

  24. OMalley, B.W., Stein, J.P., Means, A.R.: The evolution of a complex eukaryotic gene. Metabolism 31(7), 646–653 (1982)

    Article  Google Scholar 

  25. Palmer, J.D., Adams, K.L., Cho, Y., Parkinson, C.L., Qiu, Y.L., Song, K.: Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. U S A 97(13), 6960–6966 (2000)

    Article  Google Scholar 

  26. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open Software Suite. Trends in Genetics 16(6), 276–277 (2000)

    Article  Google Scholar 

  27. Rombo, S.E., Palopoli, L.: Pattern discovery in biosequences: From simple to complex patterns. In: Masseglia, F., Poncelet, P., Teisseire, M. (eds.) Data Mining Patterns: New Methods and Applications. IGI Global (2007)

    Google Scholar 

  28. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., Snyder, S.H.: Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9(22), 1323–1326 (1999)

    Article  Google Scholar 

  29. Saiardi, A., Nagata, E., Luo, H.R., Sawa, A., Luo, X., Snowman, A.M., Snyder, S.H.: Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc. Natl. Acad. Sci. U S A 98(5), 2306–2311 (2001)

    Article  Google Scholar 

  30. Saiardi, A., Resnick, A.C., Snowman, A.M.: Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl. Acad. Sci. U S A 102, 1911–1914 (2005)

    Article  Google Scholar 

  31. Saiardi, A., Sciambi, C., McCaffery, J.M.: Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl. Acad. Sci. U S A 99, 14206–14211 (2002)

    Article  Google Scholar 

  32. Shears, S.B.: How versatile are inositol phosphate kinases? Biochem. J. 377, 265–280 (2004)

    Article  Google Scholar 

  33. Stein, J.P., Catterall, J.F., Kisto, P., Means, A.R., O’Malley, B.W.: Ovomucoid intervening sequences specify functional domains and generate protein polymorphism. Cell 21, 681–687 (1980)

    Article  Google Scholar 

  34. Stevenson-Paulik, J., Odom, A., York, J.: Molecular and biochemical characterization of two plant inositol polyposphate 6-/3-5- kinases. J. Biol. Chem. 277, 42711–42718 (2002)

    Article  Google Scholar 

  35. Sweetman, D., Johnson, S., Caddick, S.E., Hanke, D.E., Brearley, C.A.: Characteryzation of an arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (atipk1). Biochem. J. 394, 95–103 (2006)

    Article  Google Scholar 

  36. Takenaka, M., Verbitskiya, D., van der Merwea, J.A., Zehrmanna, A., Brennickea, A.: The process of rna editing in plant mitochondria. Mitochondrion 8, 35–46 (2008)

    Article  Google Scholar 

  37. Togashi, S., Takazawa, K., Endo, T., Erneux, C., Onaya, T.: Structural identification of the myo-inositol 1,4,5-trisphosphate-binding domain in rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem. J. 326, 221–225 (1997)

    Article  Google Scholar 

  38. Voglmaier, S.M., Bembenek, M.E., Kaplin, A.I., Dorman, G., Olszewski, J.D., Prestwich, G.D., Snyder, S.H.: Purified inositol hexakisphosphate kinase is an atp synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc. Natl. Acad. Sci. U S A 15, 4305–4310 (1996)

    Article  Google Scholar 

  39. Wang, J., Shapiro, B., Shasha, D.: Pattern DiscoVery in Biomolecular Data: Tools, Techniques and Applications. Oxford University Press, NY (1999)

    Google Scholar 

  40. Xia, H.J., Brearley, C., Elge, S., Kaplan, B., Fromm, H., Mueller-Roeber, B.: Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional argr-mcm1 transcription complex. Plant Cell 15, 449–463 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fassetti, F., Leone, O., Palopoli, L., Rombo, S.E., Saiardi, A. (2011). IP6K Gene Discovery in Plant mtDNA. In: Rizzo, R., Lisboa, P.J.G. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2010. Lecture Notes in Computer Science(), vol 6685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21946-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21946-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21945-0

  • Online ISBN: 978-3-642-21946-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics