Skip to main content

A Multi-relational Learning Framework to Support Biomedical Applications

  • Conference paper
  • 780 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6685))

Abstract

The definition of tools able to extract knowledge from structured biological data in order to support scientists research is increasing as shown by the popularity reached in the field of bioinformatics. In particular we focus our attention on the domain of assisted reproduction techniques with particular interest on the field of intracytoplasmic sperm injection. In this paper we would provide a multi-relational learning framework able to discover hidden relationships between entities involved in this application domain. Our approach is based on a multi-relational partitional clustering algorithm followed by a multi-relational rule induction. Furthermore, the obtained rules can be represented in a easily comprehensible form and can be used as an advisor to the clinicians during their work in order to help them in determining what knowledge sources are relevant for a treatment plan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Mauro, N., Basile, T.M.A., Ferilli, S., Esposito, F.: Approximate relational reasoning by stochastic propositionalization. In: Ras, Z.W., Tsay, L.-S. (eds.) Advances in Intelligent Information Systems. Studies in Computational Intelligence, vol. 265, pp. 81–109. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience Publication, Hoboken (2000)

    MATH  Google Scholar 

  3. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M.A., Di Mauro, N.: Incremental learning and concept drift in INTHELEX. Intell. Data Anal. 8(3), 213–237 (2004)

    Google Scholar 

  4. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2006)

    Google Scholar 

  5. Griffin, J., Emery, B.R., Huang, I., Peterson, M.C., Carrell, D.T.: Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). Journal of Experimental & Clinical Assisted Reproduction 3, 2 (2006)

    Article  Google Scholar 

  6. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Machine Intell. 9(4), 532–549 (1987)

    Article  Google Scholar 

  7. Losa, G., Peretti, V., Ciotola, F., Cocchia, N., De Vico, G.: The use of fractal analysis for the quantification of oocyte cytoplasm morphology. Fractals in Biology and Medicine, 75–82 (2005)

    Google Scholar 

  8. Montag, M., Schimming, T., Kster, M., Zhou, C., Dorn, C., Rsing, B., van der Ven, H., van der Ven, K.: Oocyte zona birefringence intensity is associated with embryonic implantation potential in ICSI cycles. Reprod. Biomed. Online 16(2), 239–244 (2008)

    Article  Google Scholar 

  9. Morales, D.A., Bengoetxea, E., Larranaga, P.: XV-Gaussian-Stacking Multiclassifiers for Human Embryo Selection. In: Data Mining and Medical Knowledge Management: Cases and Applications. IGI Global Inc. (2009)

    Google Scholar 

  10. Morales, D.A., Bengoetxea, E., Larrañaga, P., García, M., Franco, Y., Fresnada, M., Merino, M.: Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Computer Methods and Programs in Biomedicine 90(2), 104–116 (2008)

    Article  Google Scholar 

  11. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19/20, 629–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rjinders, P., Jansen, C.: The predictive value of day 3 embryo morphology regarding blastocysts formation, pregnancy and implantation rate after day 5 transfer following in-vitro fertilisation or intracytoplasmic sperm injection. Hum. Reprod. 13, 2869–2873 (1998)

    Article  Google Scholar 

  13. Schmutzler, A.G., Rieckmann, O., Sushma, V., Kupka, M., Montag, M., Prietl, G., Krebs, D., Van der Ven, H.: Ideal oocyte morphology depends on estradiol concentration. Hum. Reprod. 13(suppl.), 179 (1998)

    Google Scholar 

  14. Scott, L., Alvero, R., Leondires, M., Miller, B.: The morphology of human pronuclear embryos is positively related to blastocysts development and implantation. Hum. Reprod. 15, 2394–2403 (2000)

    Article  Google Scholar 

  15. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press (1988)

    Google Scholar 

  16. Uyar, A., Nadir Ciray, H., Bener, A., Bahceci, M.: 3P: Personalized pregnancy prediction in IVF treatment process. In: Weerasinghe, D. (ed.) eHealth 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 1, pp. 58–65. Springer, Heidelberg (2009)

    Google Scholar 

  17. Veek, L.L.: An Atlas of Human Gametes and Conceptuses: An Illustrated Reference for Assisted Reproductive Technology. Parthenon (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Basile, T.M.A., Esposito, F., Caponetti, L. (2011). A Multi-relational Learning Framework to Support Biomedical Applications. In: Rizzo, R., Lisboa, P.J.G. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2010. Lecture Notes in Computer Science(), vol 6685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21946-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21946-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21945-0

  • Online ISBN: 978-3-642-21946-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics