Skip to main content

A Stroboscopic Numerical Method for Highly Oscillatory Problems

  • Conference paper
  • First Online:
Numerical Analysis of Multiscale Computations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 82))

Abstract

We suggest a method for the integration of highly oscillatory systems with a single high frequency. The new method may be seen as a purely numerical way of implementing the analytical technique of stroboscopic averaging. The technique may be easily implemented in combination with standard software and may be applied with variable step sizes. Numerical experiments show that the suggested algorithms may be substantially more efficient than standard numerical integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariel, G., Engquist, B., Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Calvo, M., Jay, L.O., Montijano, J.I., Rández, L.: Approximate compositions of a near identity map by multi-revolution Runge-Kutta methods. Numer. Math. 97, 635–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvo, M.P., Sanz-Serna, J.M.: Heterogeneous Multiscale Methods for mechanical systems with vibrations. SIAM J. Sci. Comput. 32, 2029–2046, (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartier, Ph., Murua, A., Sanz-Serna, J.M.: Higher-order averaging, formal series and numerical integration I: B-series. Found. Comput. Math 10, 695–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. E., W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Comm. Math. Sci. 1, 423–436 (2003)

    Google Scholar 

  6. E., W., Engquist, B.: The heterogeneous multiscale methods. Comm. Math. Sci. 1, 87–132 (2003)

    Google Scholar 

  7. E., W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2, 367–450 (2007)

    Google Scholar 

  8. Engquist, B., Tsai, R.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74, 1707–1742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, 2nd ed. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Kirchgraber, U.: An Ode-solver based on the method of averaging. Numer. Math. 53, 621–652 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murua, A.: Formal series and numerical integrators, Part I: Systems of ODEs and symplectic integrators. Appl. Numer. Math. 29, 221–251 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica 6, 437–484 (1997)

    Article  MathSciNet  Google Scholar 

  13. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd ed. Springer, New York (2007)

    MATH  Google Scholar 

  14. Sanz-Serna, J.M.: Modulated Fourier expansions and heterogeneous multiscale methods. IMA J. Numer. Anal. 29, 595–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  16. Sharp, R., Tsai, Y.-H., Engquist, B.: Multiple time scale numerical methods for the inverted pendulum problem. In: Engquist, B., Lötsdedt, P., Runborg, O. (eds) Multiscale Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 44, pp. 241–261. Springer, Berlin (2005)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by ‘Acción Integrada entre España y Francia’ HF2008-0105. M.P. Calvo and J.M. Sanz-Serna are also supported by project MTM2007-63257 (Ministerio de Educación, España). A. Murua is also supported by projects MTM2007-61572 (Ministerio de Educación, España) and EHU08/43 (Universidad del País Vasco/Euskal Herriko Unibertsitatea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús María Sanz-Serna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calvo, M.P., Chartier, P., Murua, A., Sanz-Serna, J.M. (2012). A Stroboscopic Numerical Method for Highly Oscillatory Problems. In: Engquist, B., Runborg, O., Tsai, YH. (eds) Numerical Analysis of Multiscale Computations. Lecture Notes in Computational Science and Engineering, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21943-6_4

Download citation

Publish with us

Policies and ethics