Advertisement

k-Enclosing Axis-Parallel Square

  • Priya Ranjan Sinha Mahapatra
  • Arindam Karmakar
  • Sandip Das
  • Partha P. Goswami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

Let P be a set of n points in the plane. Here we present an efficient algorithm to compute the smallest square containing at least k points of P for large values of k. The worst case time complexity of the algorithm is O(n + (n − k)log2 (n − k)) using O(n) space which is the best known bound for worst case time complexity.

Keywords

Internal Node Vertical Distance Minimum Area Left Boundary Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. Journal of Algorithms 12, 38–56 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. Journal of Algorithms 17, 292–318 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ahn, H.-K., Won, B.S., Demaine, E.D., Demaine, M.L., Kim, S.-S., Korman, M., Reinbacher, I., Son, W.: Covering points by disjoint boxes with outliers. Computational Geometry: Theory and Applications 44, 178–190 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Andrews, H.C.: Introduction to mathematical techniques in pattern recognition. Wiley-Intersciences, New York (1972)zbMATHGoogle Scholar
  5. 5.
    Asano, T., Bhattacharya, B., Keil, M., Yao, F.: Clustering algorithms based on maximum and minimum spanning trees. In: Proc. 4th Annual Symposium on Computational Geometry, pp. 252–257 (1988)Google Scholar
  6. 6.
    de Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chan, T.M.: Geometric Applications of a Randomized Optimization Technique. Discrete Computational Geometry 22, 547–567 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Das, S., Goswami, P.P., Nandy, S.C.: Smallest k-point enclosing rectangle and square of arbitrary orientation. Information Processing Letters 94, 259–266 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Drezner, Z., Hamacher, H.: Facility Location: Applications and Theory. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Datta, A., Lenhof, H.E., Schwarz, C., Smid, M.: Static and dynamic algorithms for k-point clustering problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 265–276. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Datta, A., Lenhof, H.E., Schwarz, C., Smid, M.: Static and Dynamic Algorithms for k-point Clustering Problems. Journal of Algorithms 19, 474–503 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete Computational Geometry 11, 321–350 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)zbMATHGoogle Scholar
  14. 14.
    Megiddo, N.: Linear-Time Algorithms for Linear Programming in ℝ3 and Related Problems. SIAM Journal Computing 12, 759–776 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Matoušek, J.: On geometric optimization with few violated constraints. Discrete Computational Geometry 14, 365–384 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Majumder, S., Bhattacharya, B.B.: Density or Discrepancy: A VLSI Designer’s Dilemma in Hot Spot Analysis. Information Processing Letter 107, 177–182 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mehlhorn, K.: Data structures and algorithms 3: multi-dimensional searching and computational geometry. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  18. 18.
    O’Rourke, J., Aggarwal, A., Maddila, S., Baldwin, M.: An optimal algorithm for finding minimal enclosing triangles. Journal of Algorithms 7, 258–269 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    O’Rourke, J.: Finding minimal enclosing boxes. International Journal of Computer and Information Sciences 14, 183–199 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: an Introduction. Springer, Berlin (1990)zbMATHGoogle Scholar
  21. 21.
    Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle. Information Processing Letter 65, 95–99 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Smid, M.: Finding k Points with a Smallest Enclosing Square, Report MPI-92-152, Max-Plank-Institute fur Informatik, Saarbriucken (1992)Google Scholar
  23. 23.
    Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc. IEEE MELECON (1983)Google Scholar
  24. 24.
    Welzl, E.: Smallest enclosing disks (balls and ellipses). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Priya Ranjan Sinha Mahapatra
    • 1
  • Arindam Karmakar
    • 2
  • Sandip Das
    • 2
  • Partha P. Goswami
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity of KalyaniIndia
  2. 2.ACM UnitIndian Statistical InstituteKolkataIndia
  3. 3.Department of Radiophysics and ElectronicsUniversity of CalcuttaIndia

Personalised recommendations