Skip to main content

Lecture Notes in Computer Science: Multiple DNA Sequence Alignment Using Joint Weight Matrix

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Included in the following conference series:

  • 1367 Accesses

Abstract

The way for performing multiple sequence alignment is based on the criterion of the maximum scored information content computed from a weight matrix, but it is possible to have two or more alignments to have the same highest score leading to ambiguities in selecting the best alignment. This paper addresses this issue by introducing the concept of joint weight matrix to eliminate the randomness in selecting the best alignment of multiple sequences. Alignments with equal scores are iteratively re-scored with joint weight matrix of increasing level (nucleotide pairs, triplets and so on) until one single best alignment is eventually found. This method can be easily implemented to algorithms using weight matrix for scoring such as those based on the widely used Gibbs sampling method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stormo, G.D., Hartzell, G.W.: Identifying Protein-Binding Sites from Unaligned DNA Fragments. Proceedings of the National Academy of Sciences of the United States of America 86(4), 1183–1187 (1989)

    Article  Google Scholar 

  2. Hu, J.J., Li, B., Kihara, D.: Limitations and Potentials of Current Motif Discovery Algorithms. Nucleic Acids Research 33(15), 4899–4913 (2005)

    Article  Google Scholar 

  3. Thijs, G., Marchal, K., Lescot, M., Rombauts, S., De Moor, B., Rouze, P., Moreau, Y.: A Gibbs Sampling Method to Detect Overrepresented Motifs in the Upstream Regions of Coexpressed Genes. Journal of Computational Biology 9(2), 447–464 (2002)

    Article  Google Scholar 

  4. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.: Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment. Science 262(5131), 208–214 (1993)

    Article  Google Scholar 

  5. Liu, Y.Y., Liu, X.S., Wei, L.P., Altman, R.B., Batzoglou, S.: Eukaryotic Regulatory Element Conservation Analysis and Identification Using Comparative Genomics. Genome Research 14(3), 451–458 (2004)

    Article  Google Scholar 

  6. Shu, J.-J., Ouw, L.S.: Pairwise Alignment of the DNA Sequence Using Hypercomplex Number Representation. Bulletin of Mathematical Biology 66(5), 1423–1438 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Favorov, A.V., Gelfand, M.S., Gerasimova, A.V., Ravcheev, D.A., Mironov, A.A., Makeev, V.J.: A Gibbs Sampler for Identification of Symmetrically Structured, Spaced DNA Motifs with Improved Estimation of the Signal Length. Bioinformatics 21(10), 2240–2245 (2005)

    Article  Google Scholar 

  8. Kuo, L., Yang, T.Y.: An Improved Collapsed Gibbs Sampler for Dirichlet Process Mixing Models. Computational Statistics & Data Analysis 50(3), 659–674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cattani, C.: Fractals and Hidden Symmetries in DNA. Mathematical Problems in Engineering 507056, 1–31 (2010)

    Google Scholar 

  10. Li, M.: Fractal Time Series-A Tutorial Review. Mathematical Problems in Engineering, 157264, 1–26 (2010)

    Google Scholar 

  11. Shu, J.-J., Li, Y.: Hypercomplex Cross-correlation of DNA Sequences. Journal of Biological Systems 18(4), 711–725 (2010)

    Article  MathSciNet  Google Scholar 

  12. Schneider, T.D., Mastronarde, D.N.: Fast Multiple Alignment of Ungapped DNA Sequences Using Information Theory and a Relaxation Method. Discrete Applied Mathematics 71(1-3), 259–268 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Benos, P.V., Bulyk, M.L., Stormo, G.D.: Additivity in Protein-DNA Interactions: How Good an Approximation is It? Nucleic Acids Research 30(20), 4442–4451 (2002)

    Article  Google Scholar 

  14. Eden, E., Brunak, S.: Analysis and Recognition of 5’ UTR Intron Splice Sites in Human Pre-mRNA. Nucleic Acids Research 32(3), 1131–1142 (2004)

    Article  Google Scholar 

  15. Osada, R., Zaslavsky, E., Singh, M.: Comparative Analysis of Methods for Representing and Searching for Transcription Factor Binding Sites. Bioinformatics 20(18), 3516–3525 (2004)

    Article  Google Scholar 

  16. Zhou, Q., Liu, J.S.: Modeling within-Motif Dependency for Transcription Factor Binding Site Predictions. Bioinformatics 20(6), 909–916 (2004)

    Article  Google Scholar 

  17. Schneider, T.D., Stormo, G.D., Gold, L., Ehrenfeucht, A.: Information Content of Binding Sites on Nucleotide Sequences. Journal of Molecular Biology 188(3), 415–431 (1986)

    Article  Google Scholar 

  18. Schneider, T.D., Stephens, R.M.: Sequence Logos: A New Way to Display Consensus Sequences. Nucleic Acids Research 18(20), 6097–6100 (1990)

    Article  Google Scholar 

  19. Shu, J.-J., Wang, Q.-W., Yong, K.-Y.: DNA-Based Computing of Strategic Assignment Problems. Physical Review Letters 106(18), 1–4 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shu, JJ., Yong, K.Y., Chan, W.K. (2011). Lecture Notes in Computer Science: Multiple DNA Sequence Alignment Using Joint Weight Matrix. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics