Advertisement

Design of a New Cloud Computing Simulation Platform

  • A. Nuñez
  • J. L. Vázquez-Poletti
  • A. C. Caminero
  • J. Carretero
  • I. M. Llorente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

Cloud computing is a paradigm which allows the use of outsourced infrastructures in a “pay-as-you-go” basis, thanks to which scalable and customizable infrastructures can be built on demand. The ability to infer the number and type of the Virtual Machines (VM) needed determines the final budget, thus it represents a key in order to efficiently manage a cloud infrastructure. In order to develop new proposals aimed at different topics related to cloud computing (for example, datacenter management, or provision of resources), a lot of work and money is required to set up an adequately sized testbed including different datacenters from different organizations and public cloud providers. Therefore, it is easier to use simulation as a tool for studying complex scenarios. With this in mind, this paper introduces iCanCloud, a novel simulator of cloud infrastructures with remarkable features such as usability, flexibility, performance and scalability. This tool is specially aimed at simulating instance types provided by Amazon, so models of these are included in the simulation framework. Accuracy experiments conducted by means of comparing results obtained using iCanCloud and a validated mathematical model of Amazon in the context of a given application are also presented. These illustrate the efficiency of iCanCloud at reproducing the behavior of Amazon instance types.

Keywords

Cloud computing simulations validation flexibility scalability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. In: Proc. Grid Computing Environments Workshop, Austin, USA (2008)Google Scholar
  2. 2.
    Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented Cloud computing: Vision, hype, and reality for delivering IT services as computing utilities. In: Proc. of the Intl. Conference on High Performance Computing and Communications (HPCC), Dalian, China (2008)Google Scholar
  3. 3.
    Sterling, T.L., Stark, D.: A high-performance computing forecast: Partly cloudy. Computing in Science and Engineering 11, 42–49 (2009)CrossRefGoogle Scholar
  4. 4.
    Vouk, M.A.: Cloud computing: Issues, research and implementations. In: Proc. of the 30th Intl. Conference on Information Technology Interfaces (ITI), Dubrovnic, Croatia (2008)Google Scholar
  5. 5.
    Foster, I.T., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters for grid communities. In: Proc. of the Sixth Intl. Symposium on Cluster Computing and the Grid (CCGRID), Singapore (2006)Google Scholar
  6. 6.
    Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual Infrastructure Management in Private and Hybrid Clouds. IEEE Internet Computing 13, 14–22 (2009)CrossRefGoogle Scholar
  7. 7.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Proc. of the Sixth Intl. Symposium on Cluster Computing and the Grid (CCGRID), Shanghai, China (2009)Google Scholar
  8. 8.
    Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges. In: Proc of the Intl. Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, USA (2010)Google Scholar
  9. 9.
    Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of cloud resources for real-time services. In: Proc. of the 7th Intl. Workshop on Middleware for Grids, Clouds and e-Science, Urbana Champaign, Illinois, USA (2009)Google Scholar
  10. 10.
    The Network Simulator, NS-2, Web page http://www.isi.edu/nsnam/ns/ (date of last access: September 18, 2010)
  11. 11.
    Liu, J., Nicol, D.M.: DaSSF 3.1 User’s Manual, Dartmouth College (2001)Google Scholar
  12. 12.
    Varga, A.: The Omnet++ discrete event simulation system, In: Proc. of the European Simulation Multiconference (ESM), Prague, Czech Republic (2001)Google Scholar
  13. 13.
    OPNET modeller, Web page http://www.opnet.com/ (date of last access: September 18, 2010)
  14. 14.
    Miller, J.A., Nair, R.S., Zhang, Z., Zhao, H.: JSIM: A JAVA-based simulation and animation environment. In: Proc of the 30th Annual Simulation Symposium (ANSS), Atlanta, USA (1997)Google Scholar
  15. 15.
    Núñez, A., Fernández, J., Garcia, J.D., Garcia, F., Carretero, J.: New techniques for simulating high performance MPI applications on large storage networks. Journal of Supercomputing 51, 40–57 (2010)CrossRefGoogle Scholar
  16. 16.
    Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Computer Architecture News 33, 92–99 (2005)CrossRefGoogle Scholar
  17. 17.
    Hardavellas, N., Somogyi, S., Wenisch, T.F., Wunderlich, R.E., Chen, S., Kim, J., Falsafi, B., Hoe, J.C., Nowatzyk, A.: Simflex: a fast, accurate, flexible full-system simulation framework for performance evaluation of server architecture. SIGMETRICS Performance Evaluation Review 31, 31–34 (2004)CrossRefGoogle Scholar
  18. 18.
    Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling and simulating Data Grids: An extension to GridSim. Concurrency and Computation: Practice and Experience 20, 1591–1609 (2008)CrossRefGoogle Scholar
  19. 19.
    Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.: Simulation of dynamic grid replication strategies in optorSim. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 46–57. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Fujiwara, K., Casanova, H.: Speed and accuracy of network simulation in the simgrid framework. In: Proc. of the 1st Intl. Workshop on Network Simulation Tools (NSTools), Nantes, France (2007)Google Scholar
  21. 21.
    Liu, X.: Scalable Online Simulation for Modeling Grid Dynamics. PhD thesis, Univ. of California at San Diego (2004)Google Scholar
  22. 22.
    Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual machines. In: Proceedings of the 17th International Symposium on High Performance Distributed Computing, HPDC 2008, pp. 87–96. ACM, New York (2008)Google Scholar
  23. 23.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience (in press, accepted on June 14, 2010)Google Scholar
  24. 24.
    Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities. In: Proc. of the 7th High Performance Computing and Simulation Conference (HPCS), Kingston, Canada (2009)Google Scholar
  25. 25.
    Calheiros, R.N., Buyya, R., De Rose, C.A.F.: A heuristic for mapping virtual machines and links in emulation testbeds. In: Proc. of the Intl. Conference on Parallel Processing (ICPP), Vienna, Austria (2009)Google Scholar
  26. 26.
    Calheiros, R.N., Buyya, R., De Rose, C.A.F.: Building an automated and self-configurable emulation testbed for grid applications. Software: Practice and Experience 40, 405–429 (2010)Google Scholar
  27. 27.
    Schlesinger, S., et al.: Terminology for Model Creditibility. Simulation 32, 103–104 (1979)CrossRefGoogle Scholar
  28. 28.
    Vazquez-Poletti, J.L., Barderas, G., Llorente, I.M., Romero, P.: A Model for Efficient Onboard Actualization of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure. In: Proc. of PARA: State of the Art in Scientific and Parallel Computing, Reykjavik, Iceland. LNCS (2010) (in press)Google Scholar
  29. 29.
    Harri, A., Linkin, V., Pichkadze, K., Schmidt, W., Pellinen, R., Lipatov, A., Vazquez, L., Guerrero, H., Uspensky, M., Polkko, J.: MMPM-Mars MetNet pre-cursor mission. In: European Geosciences Union General Assembly, Vienna, Austria (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Nuñez
    • 1
  • J. L. Vázquez-Poletti
    • 2
  • A. C. Caminero
    • 3
  • J. Carretero
    • 1
  • I. M. Llorente
    • 1
  1. 1.Dep. de InformáticaUniversidad Carlos III de MadridSpain
  2. 2.Dept. de Arquitectura de Computadores y AutomáticaUniversidad Complutense de MadridSpain
  3. 3.Dept. de Sistemas de Comunicación y ControlUniversidad Nacional de Educación a DistanciaSpain

Personalised recommendations