Potential Decomposition in the Multiconfiguration Time-Dependent Hartree Study of the Confined H Atom

  • Dimitrios Skouteris
  • Antonio Laganà
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


The Coulomb potential characterising the interaction between an electron and a proton in a spherical cavity has been optimally decomposed into a sum-of-products form, where the products are functions in one degree of freedom. The problem is a six-dimensional one, formulated in the three spherical polar coordinates describing the proton and the three ones describing the electron. As a result, each term in the potential is a product of six functions, one for each coordinate. This reduction of the potential allows the treatment of the problem in a multi-configuration time-dependent Hartree study of the energy levels of the confined H atom.


Singular Value Decomposition Spherical Cavity Natural Orbital Orthonormal Vector Natural Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fermi, E.: Z. Phys. 26, 54 (1924)CrossRefGoogle Scholar
  2. 2.
    Capitelli, M., Giordano, D., Colonna, E.: Phys. Plasmas 15, 082115 (2008)CrossRefGoogle Scholar
  3. 3.
    Griem, H.R.: Principles of Plasma Spectroscopy. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  4. 4.
    Capitelli, M., Giordano, D.: Phys. Rev. A 80, 032113 (2009)CrossRefGoogle Scholar
  5. 5.
    Stevanovic, L.: J. Phys. B - Atomic and Molecular Physics 43(16), 165002 (2010)CrossRefGoogle Scholar
  6. 6.
    Fernandez, F.M.: Eur. J. Phys. 31, 285–290 (2010)CrossRefGoogle Scholar
  7. 7.
    Fernandez, F.M.: Eur. J. Phys. 31, 611–616 (2010)CrossRefGoogle Scholar
  8. 8.
    Meyer, H.-D., Manthe, U., Cederbaum, L.S.: Chem. Phys. Lett. 165, 73 (1990)CrossRefGoogle Scholar
  9. 9.
    Manthe, U., Meyer, H.-D., Cederbaum, L.S.: J. Chem. Phys. 97, 3199 (1992)CrossRefGoogle Scholar
  10. 10.
    Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.-D.: Phys. Rep. 324, 1 (2000)CrossRefGoogle Scholar
  11. 11.
    Meyer, H.-D., Worth, G.A.: Theor. Chem. Acc. 109, 251 (2003)CrossRefGoogle Scholar
  12. 12.
    Meyer, H.-D., Gatti, F., Worth, G.A.: In: Meyer, H.-D., Gatti, F., Worth, G.A. (eds.) Multidimensional Quantum Dynamics: MCTDH Theory and Applications, p. 17. Wiley-VCH Verlag, Chichester (2009)CrossRefGoogle Scholar
  13. 13.
    Zanghellini, J., Kitzler, M., Fabian, C., Brabec, T., Scrinzi, A.: Laser Phys. 13, 1064 (2003)Google Scholar
  14. 14.
    Caillat, J., et al.: Phys. Rev. A 71, 012712 (2005)CrossRefGoogle Scholar
  15. 15.
    Kato, T., Kono, H.: Chem. Phys. Lett. 392, 533 (2004)CrossRefGoogle Scholar
  16. 16.
    Nest, M., Klamroth, T., Saalfrank, P.: J. Chem. Phys. 122, 124102 (2005)CrossRefGoogle Scholar
  17. 17.
    Nest, M.: Chem. Phys. Lett. 472, 171 (2009)CrossRefGoogle Scholar
  18. 18.
    Skouteris, D., Gervasi, O., Laganà, A.: Chem. Phys. 500, 144–148 (2010)Google Scholar
  19. 19.
    Laganà, A., Crocchianti, S., Lago, N.F., Pacifici, L., Ferraro, G.: Coll. of Czech. Comm. 68, 307 (2003)CrossRefGoogle Scholar
  20. 20.
    Laganà, A.: Towards a Grid based universal molecular simulator. In: Laganà, A., Lendvay, G. (eds.) Theory of Chemical Reaction Dynamics, p. 363. Kluwer, Dordrecht (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dimitrios Skouteris
    • 1
    • 2
  • Antonio Laganà
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di PerugiaItaly
  2. 2.Dipartimento di ChimicaUniversità degli Studi di PerugiaItaly

Personalised recommendations