Advertisement

Construction of Pseudo-triangulation by Incremental Insertion

  • Ivana Kolingerová
  • Jan Trčka
  • Ladislav Hobza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

A pseudo-triangulation is a planar subdivision into pseudo-triangles - polygons with three convex vertices, used mainly in motion planning problems in robotics. As it is a rather new concept, not too many algorithms to construct it exist. In this paper, we propose an on-line version of incremental insertion, with generalized flips to improve the shape of pseudo-triangles. This algorithmic paradigm is often used for Delaunay triangulations, but for pseudo-triangulations it has been used only in an off-line version (for sorted input points). We also experimented with several optimization criteria for the flips and show their influence on the shape of pseudo-triangles.

Keywords

Pseudo-triangulation Triangulation Incremental insertion Generalized flip Computational geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Krasser, H., Speckmann, B.: Convexity minimizes pseudo-triangulations. In: Proceedings of the 14th Canadian Conference on Computational Geometry, pp. 158–162 (2002)Google Scholar
  2. 2.
    Aichholzer, O., Rote, G., Speckmann, B., Streinu, I.: The Zigzag Path of a Pseudo-Triangulation. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 377–388. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F., Krasser, H., Brass, P.: Pseudo-triangulations from surfaces and novel type of edge flip. SIAM Journal on Computing 32, 1621–1653 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Counting and enumerating pseudo-triangulations with greedy flip algorithm. SIAM Journal on Computing 36, 721–739 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kettner, L., Kirkpatrick, D., Mantler, A., Snoeyink, J., Speckmann, B., Takeuchi, F.: Tight degree bounds for pseudo-triangulations of points. Computational Geometry - Theory and Applications 25(1-2), 3–12 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. In: Proceedings of the 16th ACM Symposium on Computational Geometry, pp. 322–330 (2000)Google Scholar
  8. 8.
    Kirkpatrick, D., Speckmann, B.: Separation sensitive kinetic separation structures for convex polygons. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 222–236. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Kolingerová, I., Trčka, J., Žalik, B.: The stochastic walk algorithms for point location in pseudo-triangulations (2011) (manuscript)Google Scholar
  10. 10.
    Műcke, E.P., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 274–283 (1996)Google Scholar
  11. 11.
    Pocchiola, M., Vertger, G.: Computing the visibility graph via pseudo-triangulations. In: Proceedings of the 11th Annual ACM Symposium on Computational Geometry, pp. 248–257 (1995)Google Scholar
  12. 12.
    Pocchiola, M., Vertger, G.: The visibility complex. Proceedings of the International Journal of Computational Geometry and Applications, 279–308 (1996)Google Scholar
  13. 13.
    Pocchiola, M., Vertger, G.: Pseudo-triangulations: theory and applications. In: Proceedings of the 12th Annual ACM Symposium on Computational Geometry, pp. 291–300 (1996)Google Scholar
  14. 14.
    Randall, D., Rote, G., Santos, F., Snoeyink, J.: Counting triangulations and pseudo-triangulations of wheels. In: Proceedings of the 13th Canadian Conference on Computational Geometry, pp. 149–152 (2001)Google Scholar
  15. 15.
    Rote, G., Wang, C.A., Wang, L., Xu, Y.: On constrained minimum pseudotriangulations. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 445–454. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Speckmann, B., Tóth, C.D.: Allocating vertex π-guards in simple polygons via pseudo-triangulations. In: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 109–118 (2003)Google Scholar
  17. 17.
    Streinu, I.: A combinatorical approach to planar non-colliding robot arm motion planning. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS), pp. 443–453 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ivana Kolingerová
    • 1
  • Jan Trčka
    • 2
  • Ladislav Hobza
    • 1
  1. 1.University of West BohemiaCzech Republic
  2. 2.Charles UniversityCzech Republic

Personalised recommendations