Advertisement

Evaluation of SOA Formation Using a Box Model Version of CMAQ and Chamber Experimental Data

  • Manuel Santiago
  • Ariel F. Stein
  • Fantine Ngan
  • Marta G. Vivanco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

A box model version of the Community Multiscale Air Quality Modeling System 4.7 (CMAQ 4.7) is implemented and tested with the results obtained from a secondary organic aerosol formation experiment performed at the EUPHORE smog chamber (Valencia, Spain). In order to simulate the conditions of the chamber, no transport, dispersion, or deposition phenomena are considered in the box model. Four simulations were carried out, combining different gas-phase chemical mechanisms and aerosol modules, and compared to the experimental data obtained from the smog chamber. While the concentrations predicted by the model for the parent compounds and ozone are very close to observed values, aerosol formation is clearly overpredicted, specially when the aerosol module AERO_5 is used.

Keywords

smog chamber SOA formation photochemical modelling air quality model evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanakidou, M., et al.: Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics 5, 1053–1123 (2005)CrossRefGoogle Scholar
  2. 2.
    Lim, H.-J., Turpin, B.J.: Origins of Primary and Secondary Organic Aerosol in Atlanta: Results of Time-Resolved Measurements during the Atlanta Supersite Experiment. Environmental Science and Technology 36(21), 4489–4496 (2002)CrossRefGoogle Scholar
  3. 3.
    Griffin, R.J., et al.: Organic Aerosol Formation from the Oxidation of Biogenic Hydrocarbons. Journal of Geophysical Research 104(D3), 3555–3567 (1999)CrossRefGoogle Scholar
  4. 4.
    Ng, N.L., et al.: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics 7, 5159–5174 (2007)CrossRefGoogle Scholar
  5. 5.
    Vivanco, M.G., et al.: SOA formation in a photoreactor from a mixture of organic gases and HONO for different experimental conditions. Atmospheric Environment 45, 708–715 (2011)CrossRefGoogle Scholar
  6. 6.
    Vivanco, M.G., Santiago, M.: Secondary organic aerosol formation from the oxidation of different mixtures of organic gases. Air Quality, NOVA (2010)Google Scholar
  7. 7.
    Bloss, C., et al.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data. Atmospheric Chemistry and Physics 5, 623–639 (2005)CrossRefGoogle Scholar
  8. 8.
    Dodge, M.C.: Chemical oxidant mechanisms for air quality modeling: critical review. Atmospheric Environment 34, 2103–2130 (2000)CrossRefGoogle Scholar
  9. 9.
    Pankow, J.F.: An Absorption Model of the Gas Aerosol Partitioning Involved in the formation of Secondary Organic Aerosol. Atmospheric Environment 28, 189–193 (1994)CrossRefGoogle Scholar
  10. 10.
    Odum, J.R., et al.: Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environmental Science and Technology 30, 2580–2585 (1996)CrossRefGoogle Scholar
  11. 11.
    Byun, D.W., Ching, J.K.S.: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System,Atmospheric Modeling Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (1999)Google Scholar
  12. 12.
    Byun, D., Schere, K.L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Atmospheric Modeling Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (2004)Google Scholar
  13. 13.
    Yarwood, G., et al.: Updates To The Carbon Bond Chemical Mechanism: CB05. Yocke & Company, Rowland Way (2005)Google Scholar
  14. 14.
    Carter, W.P.L.: Implementation Of The Saprc-99 Chemical Mechanism Into The Models-3 Framework, United States Environmental Protection Agency (2000)Google Scholar
  15. 15.
    Schell, B., et al.: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. Journal of Geophysical Research 106(D22), 28,275–28,293 (2001)CrossRefGoogle Scholar
  16. 16.
    Binkowski, F.S., Roselle, S.J.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description Journal of Geophysical Research. 108(D6), 4183 (2003)CrossRefGoogle Scholar
  17. 17.
    Edney, E.O., et al.: Updated SOA Chemical Mechanism for the Community Multi-Scale Air Quality Model, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina. (2007)Google Scholar
  18. 18.
    Bahreini, R., et al.: Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, and m-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environmental Science and Technology 39, 5674–5688 (2005)CrossRefGoogle Scholar
  19. 19.
    Claeys, M., et al.: Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science 303, 1173–1176 (2004)CrossRefGoogle Scholar
  20. 20.
    Henze, D.K., Seinfeld, J.H.: Global secondary organic aerosol from isoprene oxidation. Geophysical Research Letters 33(L09812) (2006)Google Scholar
  21. 21.
    Jimenez, J.L., et al.: Evolution of Organic Aerosols in the Atmosphere. Science 326, 1525–1529 (2009)CrossRefGoogle Scholar
  22. 22.
    Stockwell, W.R., Middleton, P., Chang, J.S.: The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling. Journal of Geophysical Research 95, 16343–16367 (1990)CrossRefGoogle Scholar
  23. 23.
    Fernández-Villarrenaga, V., et al.: C1 to C9 volatile organic compound measurements in urban air. Science of the Total Environment, 334–335, 167–176 (2004) Google Scholar
  24. 24.
    Kroll, J.H., et al.: Secondary Organic Aerosol Formation from Isoprene Photooxidation. Environmental Science and Technology 40, 1869–1877 (2006)CrossRefGoogle Scholar
  25. 25.
    Ng, N.L., et al.: Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons. Environmental Science and Technology 40, 2283–2297 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel Santiago
    • 1
  • Ariel F. Stein
    • 2
  • Fantine Ngan
    • 3
  • Marta G. Vivanco
    • 1
  1. 1.CIEMAT (Research Center for Energy, Environment and Technology)MadridSpain
  2. 2.Inc. On assignment to NOAA’s Air Resources LaboratoryEarth Resources & TechnologySilver SpringUSA
  3. 3.NOAA’s Air Resources LaboratorySilver SpringUSA

Personalised recommendations