Advertisement

Applying an Elitist Electromagnetism-Like Algorithm to Head Robot Stabilization

  • Miguel Oliveira
  • Cristina P. Santos
  • Ana Maria A. C. Rocha
  • Lino Costa
  • Manuel Ferreira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

Images captured by cameras mounted on the head of walking robots show oscillations due to the locomotion itself. These disturbances difficult the achievement of robotic tasks that rely on visual information.

In this work, we tackle this problematic and propose a combined approach based on a controller architecture that is able to generate locomotion for a quadruped robot and a global optimization algorithm to generate head movement stabilization. The movement controllers are biologically inspired in the concept of Central Pattern Generators that are modeled based on nonlinear dynamical systems, coupled Hopf oscillators. This approach allows to explicitly specify parameters such as amplitude, offset and frequency of movement and to smoothly modulate the generated oscillations according to changes in these parameters.

An elitist Electromagnetism-like algorithm searches for the best set of parameters that generates the head movement in order to reduce the head shaking caused by locomotion. Optimization is done off-line according to the head movement induced by the locomotion when no stabilization procedure was performed.

Experiments in a walking AIBO robot demonstrate that the proposed approach generates head movement that reduces significantly the one induced by locomotion.

Keywords

Electromagnetism-like algorithm Elitism Quadruped Locomotion Central Pattern Generators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardizzone, E., Pirrone, R., Gambino, O.: Frequency determined homomorphic unsharp masking algorithm on knee MR images. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 922–929. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Birbil, S.I., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. of Global Optimization 25, 263–282 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Birbil, S.I., Fang, S., Sheu, R.: On the convergence of a population-based global optimization algorithm. Journal of Global Optimization 30, 301–318 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Castro, L., Santos, C., Oliveira, M., Ijspeert, A.: Postural control on a quadruped robot using lateral tilt: A dynamical system approach. In: EUROS. Springer Tracts in Advanced Robotics, vol. 44, pp. 205–214. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Cherubini, A., Oriolo, G., Macr, F., Aloise, F., Cincotti, F., Mattia, D.: A visionbased path planner/follower for an assistive robotics project. In: Workshop on on Robot Vision, VISAPP, pp. 77–86 (2007)Google Scholar
  6. 6.
    Costa, L., Rocha, A.M.A.C., Santos, C.P., Oliveira, M.: A Global Optimization Stochastic Algorithm for Head Motion Stabilization during Quadruped Robot Locomotion. In: Costa, L. (ed.) Proceedings of 2nd International Conference on Engineering Optimization, EngOpt 2010, Lisbon, Portugal (2010)Google Scholar
  7. 7.
    Cromwell, R., Schurter, J., Shelton, S., Vora, S.: Head stabilization strategies in the sagittal plane during locomotor tasks. Physiother Res Int. 9(1), 33–42 (2004)CrossRefGoogle Scholar
  8. 8.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dunbar, D.C., Badam, G.L., Hallgrimsson, B., Vieilledent, S.: Stabilization and mobility of the head and trunk in wild monkeys during terrestrial and flat-surface walks and gallops. J. Exp. Biol. 207(6), 1027–1042 (2004)CrossRefGoogle Scholar
  10. 10.
    Imai, T.: Interaction of the body, head, and eyes during walking and turning. Experimental Brain Research 136(1), 1–18 (2008)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kurazume, R., Hirose, S.: Development of image stabilization system for remote operation of walking robots. In: Robotics and Automation, Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1856–1861 (2000)Google Scholar
  12. 12.
    Liang, Y.-M., Shih, A.C.-C., Tyan, H.-R., Liao, H.-Y.M.: Background modeling using phase space for day and night video surveillance systems. PCM (1), 206–213 (2004)Google Scholar
  13. 13.
    Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)Google Scholar
  14. 14.
    Nadeau, S., Amblard, B., Mesure, S., Bourbonnais, D.: Head and trunk stabilization strategies during forward and backward walking in healthy adults. Gait and Posture 18, 134–142 (2003)CrossRefGoogle Scholar
  15. 15.
    Panerai, F., Metta, G., Sandini, G.: Learning visual stabilization reflexes in robots with moving eyes. Neurocomputing 48(1-4), 323–337 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pozzo, T., Berthoz, A., Lefort, L.: Head stabilization during various locomotor tasks in humans. Experimental Brain Research 82, 97–106 (1990)CrossRefGoogle Scholar
  17. 17.
    Shibata, T., Schaal, S.: Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks. Neural Networks 14, 201–216 (2001)CrossRefGoogle Scholar
  18. 18.
    Sproewitz, A., Moeckel, R., Maye, J., Asadpour, M., Ijspeert, A.J.: Adaptive Locomotion Control in Modular Robotics, In Workshop on Self-Reconfigurable Robots/Systems and Applications. In: IROS 2007, vol. 84, pp. 81–84 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miguel Oliveira
    • 1
  • Cristina P. Santos
    • 1
  • Ana Maria A. C. Rocha
    • 2
  • Lino Costa
    • 2
  • Manuel Ferreira
    • 1
  1. 1.Industrial Electronics Department, School of EngineeringUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Production and Systems, School of EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations