Nonlinear Optimization for Human-Like Movements of a High Degree of Freedom Robotics Arm-Hand System

  • Eliana Costa e Silva
  • Fernanda Costa
  • Estela Bicho
  • Wolfram Erlhagen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


The design of autonomous robots, able to closely cooperate with human users in shared tasks, provides many new challenges for robotics research. Compared to industrial applications, robots working in human environments will need to have human-like abilities in their cognitive and motor behaviors. Here we present a model for generating trajectories of a high degree of freedom robotics arm-hand system that reflects optimality principles of human motor control. The process of finding a human-like trajectory among all possible solutions is formalized as a large-scale nonlinear optimization problem. We compare numerically three existing solvers, IPOPT, KNITRO and SNOPT, in terms of their real-time performance in different reach-to-grasp problems that are part of a human-robot interaction task. The results show that the SQP methods obtain better results than the IP methods. SNOPT finds optimal solutions for all tested problems in competitive computational times, thus being the one that best serves our purpose.


anthropomorphic robotic system reach-to-grasp human-like collision-free arm movements large-scale nonlinear optimization interior-point methods sequential quadratic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hwang, Y.K., Ahuja, N.: Gross motion planning a survey. ACM Computing Surveys (CSUR) 24(3), 219–291 (1992)CrossRefGoogle Scholar
  2. 2.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Schraft, R.D., Schmierer, G.: Service Robots: products, scenarios, visions. A K Peters, Ltd., Wellesley (2000)Google Scholar
  4. 4.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots: concepts, design. Robot. Auton. Syst. 42(3-4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Kiesler, S., Hinds, P.: Human-Robot Interaction. Special Issue of Hum-Comput Interact 19(1/2) (2004)Google Scholar
  6. 6.
    Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006)CrossRefGoogle Scholar
  7. 7.
    Duffy, B.R.: Anthropomorphism and the social robot. Robot Auton. Syst. 42(3-4), 177–190 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fukuda, T., Michelini, R., Potkonjak, V., Tzafestas, S., Valavanis, K., Vukobratovic, M.: How far away is artificial man? IEEE Robot. Autom. Mag. 8(1), 66–73 (2001)CrossRefGoogle Scholar
  9. 9.
    Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)CrossRefGoogle Scholar
  10. 10.
    Bicho, E., Louro, L., Hipólito, N., Erlhagen, W.: A dynamic field approach to goal inference and error monitoring for human-robot interaction. In: Dautenhahn, E. (ed.) Proceedings of the 2009 Inter. Symp. on New Frontiers in HRI. AISB Convention, April 8-9, pp. 31–37. Heriot-Watt University, Edinburgh (2009)Google Scholar
  11. 11.
    Bicho, E., Erlhagen, W., Louro, L., Costa e Silva, E., Silva, R., Hipólito, N.: A dynamic field approach to goal inference, error detection and anticipatory action selection in human-robot collaboration. In: Sanders, J., Dautenhahn, K. (eds.) New Frontiers in Human-Robot Interaction. John Benjamins Publishing Company, Amsterdam (accepted) Google Scholar
  12. 12.
    Bicho, E., Erlhagen, W., Louro, L.: Costa e Silva, E.: Neuro-cognitive mechanisms of decision making in joint action: a Human-Robot interaction study. Hum. Movement. Sci (January 3, 2011) doi:10.1016/j.humov.2010.08.012Google Scholar
  13. 13.
    Silva, R., Bicho, E., Erlhagen, W.: ARoS: An Anthropomorphic Robot For Human-Robot Interaction And Coordination Studies. In: CONTROLO 2008, pp. 819–826 (2008)Google Scholar
  14. 14.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Byrd, R., Nocedal, J., Waltz, R.: Knitro: An integrated package for nonlinear optimization. Large Scale Nonlinear Optimization, 35–59 (2006)Google Scholar
  16. 16.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM J. Optimiz. 12, 979–1006 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rosenbaum, D., Meulenbroek, R., Vaugham, J., Jansen, C.: Posture-based Motion planning: Applications to grasping. Psychol. Rev. 108(4), 709–734 (2001)CrossRefGoogle Scholar
  18. 18.
    Craig, J.J.: Introduction to robotics: mechanics and control, 2nd edn. Addison-Wesley, Reading (1998)Google Scholar
  19. 19.
    Lommertzen, J., Costa e Silva, E., Cuijpers, R.H., Meulenbroek, R.G.J.: Collision-avoidance characteristics of grasping. In: Pezzulo, G., Butz, M.V., Sigaud, O., Baldassarre, G. (eds.) ABiALS 2008. LNCS, vol. 5499, pp. 188–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eliana Costa e Silva
    • 1
  • Fernanda Costa
    • 2
  • Estela Bicho
    • 1
  • Wolfram Erlhagen
    • 2
  1. 1.Dept. of Industrial ElectronicsUniversity of MinhoPortugal
  2. 2.Dept. of Mathematics and ApplicationsUniversity of MinhoPortugal

Personalised recommendations