On Multiparametric Analysis in Generalized Transportation Problems

  • Sanjeet Singh
  • Pankaj Gupta
  • Milan Vlach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


In this paper, we provide the multiparametric sensitivity analysis of a generalized transportation problem whose objective function is the sum of linear and linear fractional function. We construct critical regions for simultaneous and independent perturbations in the objective function coefficients treating each parameter at its independent level of sensitivity. A numerical example is given to illustrate the multiparametric sensitivity analysis results. We also extend the sensitivity results to the three index transportation problem with planar as well as axial constraints.


sensitivity analysis parametric analysis transportation problem fractional programming maximum volume region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cambini, A., Martein, L., Schaible, S.: On the pseudoconvexity of the sum of two linear fractional functions. Nonconvex Optimization and its Applications 77, 161–172 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Gal, T., Greenberg, H.J.: Advances in Sensitivity Analysis and Parametric Programming. Kluwer Academic Press, Boston (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hadley, G.: Linear Programming. Addison-Wesley Pub. Co. Inc., Mass (1962)zbMATHGoogle Scholar
  4. 4.
    Haley, K.B.: The multi-index problem. Opearions Research 11, 368–379 (1963)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hirche, J.: On programming problems with a linear-plus-linear fractional objective function. Cahiers du Centre d’Etudes de Recherche Opérationelle 26(1-2), 59–64 (1984)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Kanchan, P.K., Holland, A.S.B., Sahney, B.N.: Transportation techniques in linear-plus-fractional programming. Cahiers du Centre d’Etudes de Recherche Opérationelle 23(2), 153–157 (1981)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Luenberger, D.G., Yinyu, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)zbMATHGoogle Scholar
  8. 8.
    MATLAB version 7.10.0. Natick. The MathWorks Inc., Massachusetts (2010)Google Scholar
  9. 9.
    Misra, S., Das, C.: The sum of linear and linear fractional function and a three dimensional transportation problem. Opsearch 18(3), 139–157 (1981)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Schaible, S.: Simultaneous optimization of absolute and relative terms. Z. Angew. Math. u. Mech. 64(8), 363–364 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Schell, E.D.: Distribution of product by several properties. In: Proceedings of the 2nd Symposium in Linear Programming, DCS/Comptroller H.Q.U.S.A.F., Washington D.C (1955)Google Scholar
  12. 12.
    Teterev, A.G.: On a generalization of linear and piecewise linear programming. Matekon 6, 246–259 (1970)Google Scholar
  13. 13.
    Wang, H.F., Huang, C.S.: Multi-parametric analysis of the maximum tolerance in a linear programming problem. European Journal of Operational Research 67, 75–87 (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, H.F., Huang, C.S.: The maximal tolerance analysis on the constraint matrix in linear programming. Journal of the Chinese Institute of Engineers 15(5), 507–517 (1992)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sanjeet Singh
    • 1
  • Pankaj Gupta
    • 2
  • Milan Vlach
    • 3
  1. 1.Operations Management GroupIndian Institute of Management CalcuttaKolkataIndia
  2. 2.Department of Operational Research, Faculty of Mathematical SciencesUniversity of DelhiDelhiIndia
  3. 3.Hosei UniversityTokyoJapan

Personalised recommendations