Laguerre Polynomials in Several Hypercomplex Variables and Their Matrix Representation

  • H. R. Malonek
  • G. Tomaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


Recently the creation matrix, intimately related to the Pascal matrix and its generalizations, has been used to develop matrix representations of special polynomials, in particular Appell polynomials. In this paper we describe a matrix approach to polynomials in several hypercomplex variables based on special block matrices whose structures simulate the creation matrix and the Pascal matrix. We apply the approach to hypercomplex Laguerre polynomials, although it can be used for other Appell sequences, too.


Hypercomplex Laguerre polynomials block creation matrix block Pascal matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Trigiante, D.: The Matrices of Pascal and Other Greats. Amer. Math. Monthly 108(3), 232–245 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Appell, P.: Sur une Classe de Polynômes. Ann. Sci. École Norm. Sup. 9(2), 119–144 (1880)MathSciNetGoogle Scholar
  3. 3.
    Cação, I., Falcão, M.I., Malonek, H.R.: Laguerre Derivative and Monogenic Laguerre Polynomials. An Operational Approach. Math. Comput. Modelling 53, 1084–1094 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Call, G.S., Velleman, J.: Pascal’s Matrices. Amer. Math. Monthly 100, 372–376 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Carlson, B.C.: Polynomials Satisfying a Binomial Theorem. J. Math. Anal. Appl. 32, 543–558 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Guerlebeck, K., Habetha, K., Sproessig, W.: Holomorphic Functions in the Plane and n-dimensional Space. Birkhäuser, Basel (2008)Google Scholar
  7. 7.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kaz’min, Y.A.: On Appell Polynomials. Math. Notes 6(2), 556–562 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations: Numerical Methods and Applications. M. Dekker, New York (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Malonek, H.: A New Hypercomplex Structure of the Euclidean Space ℝm + 1 and the Concept of Hypercomplex Differentiability. Complex Variables 14, 25–33 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Malonek, H.: Power Series Representation for Monogenic Functions in R m + 1 Based on a Permutational Product. Complex Variables 15, 181–191 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Malonek, H. : Selected Topics in Hypercomplex Function Theory: Clifford Algebras and Potential Theory. In: Eriksson, S.-L. (ed.), Report Series 7, pp. 111-150. University of Joensuu (2004)Google Scholar
  13. 13.
    Malonek, H.R., Tomaz, G.: Bernoulli Polynomials and Pascal Matrices in the Context of Clifford Analysis. Discrete Appl. Math. 157, 838–847 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Malonek, H., Tomaz, G.: On Generalized Euler Polynomials in Clifford Analysis. Int. J. Pure Appl. Math. 44(3), 447–465 (2008)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Malonek, H.R., Aceto, L., Tomaz, G.: A unified approach to matrix representation of Appell polynomials (in preparation) Google Scholar
  16. 16.
    Tomaz, G., Malonek, H.R.: Special Block Matrices and Multivariate Polynomials. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2010, Melville, New York. AIP Conference Proceedings, vol. 1281, pp. 1515–1518 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. R. Malonek
    • 1
  • G. Tomaz
    • 2
  1. 1.Universidade de AveiroAveiroPortugal
  2. 2.Instituto Politécnico da GuardaGuardaPortugal

Personalised recommendations