Advertisement

Modified Differential Evolution Based on Global Competitive Ranking for Engineering Design Optimization Problems

  • Md. Abul Kalam Azad
  • Edite M. G. P. Fernandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

Engineering design optimization problems are formulated as large-scale mathematical programming problems with nonlinear objective function and constraints. Global optimization finds a solution while satisfying the constraints. Differential evolution is a population-based heuristic approach that is shown to be very efficient to solve global optimization problems with simple bounds. In this paper, we propose a modified differential evolution introducing self-adaptive control parameters, modified mutation, inversion operation and modified selection for obtaining global optimization. To handle constraints effectively, in modified selection we incorporate global competitive ranking which strikes the right balance between the objective function and the constraint violation. Sixteen well-known engineering design optimization problems are considered and the results compared with other solution methods. It is shown that our method is competitive when solving these problems.

Keywords

Engineering design constraints handling ranking differential evolution global optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhtar, S., Tai, K., Ray, T.: A socio-behavioural simulation model for engineering design optimization. Eng. Optim. 34, 341–354 (2002)CrossRefGoogle Scholar
  2. 2.
    Bernardino, H.S., Barbosa, H.J.C., Lemonge, A.C.C.: A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. IEEE Congress on Evolutionary Computation, 646–653 (2007)Google Scholar
  3. 3.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)CrossRefGoogle Scholar
  4. 4.
    Cagnina, L.C., Esquivel, S.C., Coello Coello, C.A.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Inform. 32(3), 319–326 (2008)zbMATHGoogle Scholar
  5. 5.
    Coello Coello, C.A.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim. 32(3), 275–308 (2000)CrossRefGoogle Scholar
  6. 6.
    Coello Coello, C.A., Cortés, N.C.: Hybridizing a genetic algorithm with an artificial immune system for global optimization. Eng. Optim. 36(5), 607–634 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Deb, K., Goyal, M.: Optimizing engineering designs using a combined genetic search. In: Back, I.T. (ed.) 7th International Conference on Genetic Algorithms, pp. 512–528 (1997)Google Scholar
  8. 8.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Boyd & Fraser Publishing Co., Massachusetts (1993)zbMATHGoogle Scholar
  10. 10.
    Gopal, A.V., Rao, P.V.: The optimization of the grinding of silicon carbide with diamond wheels using genetic algorithms. Int. J. Adv. Manuf. Technol. 22, 475–480 (2003)CrossRefGoogle Scholar
  11. 11.
    He, S., Prempain, E., Wu, Q.H.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36(5), 585–605 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hedar, A.-R., Fukushima, M.: Derivative-free filter simulated annealing method for constrained continuous global optimization. J. Glob. Optim. 35, 521–549 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)zbMATHGoogle Scholar
  14. 14.
    Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms. Eur. J. Oper. Res. 169, 1176–1184 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lampinen, J., Zelinka, I.: Mixed integer-discrete-continuous optimization by differential evolution. In: Proceedings of the 5th International Conference on Soft Computing, pp. 71–76 (1999)Google Scholar
  16. 16.
    Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, T.-C.: Developing a fuzzy proportional-derivative controller optimization engine for engineering optimization problems. PhD Thesis, ch. 6 (2006), http://grc.yzu.edu.tw/OptimalWeb/Content.aspx?CatSubID=129
  18. 18.
    Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 582–591. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Ray, T., Tai, K.: An evolutionary algorithm with a multilevel pairing strategy for single and multiobjective optimization. Found. Comput. Decis. Sci. 26(1), 75–98 (2001)Google Scholar
  20. 20.
    Ray, T., Liew, K.M.: A swarm metaphor for multiobjective design optimization. Eng. Optim. 34(2), 141–153 (2002)CrossRefGoogle Scholar
  21. 21.
    Ray, T., Liew, K.M.: Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7(4), 386–396 (2003)CrossRefGoogle Scholar
  22. 22.
    Reddy, M.J., Kumar, D.N.: An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim. 39(1), 49–68 (2007)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Rocha, A.M.A.C., Fernandes, E.M.G.P.: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems. Int. J. Comput. Math. 86(10), 1932–1946 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Tran. Evol. Comput. 4(3), 284–294 (2000)CrossRefGoogle Scholar
  25. 25.
    Runarsson, T.P., Yao, X.: Constrained evolutionary optimization – the penalty function approach. In: Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Optimization: International Series in Operations Research and Management Science, pp. 87–113 (2003)Google Scholar
  26. 26.
    Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. (ASME) 112, 223–229 (1990)CrossRefGoogle Scholar
  27. 27.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Tomassetti, G.: A cost-effective algorithm for the solution of engineering problems with particle swarm optimization. Eng. Optim. 42(5), 471–495 (2010)CrossRefGoogle Scholar
  29. 29.
    Wang, J., Yin, Z.: A ranking selection-based particle swarm optimizer for engineering design optimization problems. Struct. Multidisc. Optim. 37(2), 131–147 (2007)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang, Y., Cai, Z., Zhou, Y., Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidisc. Optim. 37, 395–413 (2009)CrossRefGoogle Scholar
  31. 31.
    Yildiz, A.R.: A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manuf. 25, 261–270 (2009)CrossRefGoogle Scholar
  32. 32.
    Zahara, E., Hu, C.-H.: Solving constrained optimization problems with hybrid particle swarm optimization. Eng. Optim. 40(11), 1031–1049 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Md. Abul Kalam Azad
    • 1
  • Edite M. G. P. Fernandes
    • 1
  1. 1.Algoritmi R&D Center, School of EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations