An Optimal Hidden-Surface Algorithm and Its Parallelization

  • F. Dévai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


Given a collection of non-intersecting simple polygons possibly with holes and with a total of n edges in three-dimensional space; parallel algorithms are given for the problems called hidden-line and hidden-surface removal in computer graphics. More precisely, algorithms are proposed to find the portions of the edges visible from (0,0, ∞ ) and to find the upper envelope (i.e., the pointwise maximum) of the polygons. The proposed solution for the hidden-line problem is the parallelization of the optimal sequential algorithm given by Dévai in 1986. As the optimal sequential algorithm for the hidden-surface problem given by McKenna in 1987 is rather involved, a new optimal sequential algorithm is proposed, which is amenable to parallelization and might also have practical significance in its own right. Both of the parallel hidden-line and hidden-surface algorithms take Θ(logn) time using n 2/logn CREW PRAM processors.


Black Hole Parallel Algorithm Simple Polygon Left Endpoint Random Access Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajwani, D., Sitchinava, N., Zeh, N.: Geometric algorithms for private-cache chip multiprocessors. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 75–86. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Appel, A.: The notion of quantitative invisibility and the machine rendering of solids. In: Proc. 1967 22nd National Conference, ACM 1967, pp. 387–393. ACM Press, New York (1967)CrossRefGoogle Scholar
  3. 3.
    Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algorithms for private-cache chip multiprocessors. In: Proc. 20th Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2008, pp. 197–206. ACM Press, New York (2008)Google Scholar
  4. 4.
    Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1, 49–63 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ben-Amram, A.M., Galil, Z.: Topological lower bounds on algebraic random access machines. SIAM J. Comput. 31, 722–761 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    de Berg, M., Gray, C.: Computing the visibility map of fat objects. Comput. Geom. Theory Appl. 43(4), 410–418 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    de Berg, M., Halperin, D., Overmars, M., Snoeyink, J., van Kreveld, M.: Efficient ray shooting and hidden surface removal. Algorithmica 12, 30–53 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Blelloch, G.E., Maggs, B.M.: Parallel algorithms. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, Chapman & Hall/CRC (2010)Google Scholar
  9. 9.
    Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25, 76–90 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chen, W., Wada, K.: On computing the upper envelope of segments in parallel. IEEE Transactions on Parallel and Distributed Systems 13(1), 5–13 (2002)CrossRefGoogle Scholar
  11. 11.
    Cole, R.: Parallel merge sort. SIAM J. Comput. 17, 770–785 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. Journal of Symbolic Computation 7(1), 11–30 (1989)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cook, S., Dwork, C., Reischuk, R.: Upper and lower time bounds for parallel random access machines without simultaneous writes. SIAM J. Comput. 15, 87–97 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dévai, F.: Quadratic bounds for hidden-line elimination. In: Proc. 2nd Annu. ACM Sympos. Comput. Geom, pp. 269–275 (1986)Google Scholar
  15. 15.
    Dévai, F.: An intersection-sensitive hidden-surface algorithm. In: Proc. Eurographics 1987, pp. 495–502 (1987)Google Scholar
  16. 16.
    Dévai, F.: An O(logN) parallel time exact hidden-line algorithm. In: Advances in Computer Graphics Hardware II, Record of the Second Eurographics Workshop on Graphics Hardware, pp. 65–73 (1988)Google Scholar
  17. 17.
    Edelsbrunner, H., O’Rouke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Franklin, W.R.: A linear time exact hidden surface algorithm. Comput. Graph. 14(3), 117–123 (1980); Proc. Siggraph 1980 CrossRefGoogle Scholar
  19. 19.
    Galimberti, R., Montanari, U.: An algorithm for hidden-line elimination. Commun. ACM 12, 206 (1969)CrossRefzbMATHGoogle Scholar
  20. 20.
    Goodrich, M.T.: A polygonal approach to hidden-line and hidden-surface elimination. CVGIP: Graph. Models Image Process. 54, 1–12 (1992)Google Scholar
  21. 21.
    Goodrich, M.T.: Constructing arrangements optimally in parallel. Discrete and Computational Geometry 9, 371–385 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Goodrich, M.T., Atallah, M.J., Overmars, M.H.: Output-sensitive methods for rectilinear hidden surface removal. Inform. Comput. 107, 1–24 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Gupta, N., Sen, S.: An efficient output-size sensitive parallel algorithm for hidden-surface removal for terrains. Algorithmica 31, 179–207 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Hagerup, T.: Planar depth-first search in O(logn) parallel time. SIAM J. Comput. 19, 678–704 (1990)CrossRefzbMATHGoogle Scholar
  25. 25.
    Halperin, D., Sharir, M.: New bounds for lower envelopes in three dimensions, with applications to visibility in terrains. Discrete and Computational Geometry 12, 313–326 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hornung, C.: An approach to a calculation-minimized hidden line algorithm. Computers & Graphics 6(3), 121–126 (1982)CrossRefGoogle Scholar
  27. 27.
    Hornung, C.: A method for solving the visibility problem. IEEE Comput. Graph. Appl. 4, 26–33 (1984)CrossRefGoogle Scholar
  28. 28.
    IBM Blue Gene Team: Overview of the IBM Blue Gene/P project. IBM J. Res. Dev. 52, 199–220 (January 2008)Google Scholar
  29. 29.
    JáJá, J.: An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing Co., Inc, Redwood City (1992)zbMATHGoogle Scholar
  30. 30.
    Katz, M.J., Overmars, M.H., Sharir, M.: Efficient hidden surface removal for objects with small union size. Comput. Geom. Theory Appl. 2, 223–234 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Keeler, T., Fedorkiw, J., Ghali, S.: The spherical visibility map. Comput. Aided Des. 39, 17–26 (2007)CrossRefGoogle Scholar
  32. 32.
    Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Thomson Leighton, F.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers Inc, San Mateo (1992)zbMATHGoogle Scholar
  34. 34.
    Loutrel, P.P.: A solution to the hidden-line problem for computer drawn polyhedra. IEEE Trans. Comput. C-19, 205–213 (1970)CrossRefzbMATHGoogle Scholar
  35. 35.
    Mark, W.: Future graphics architectures. Queue 6, 54–64 (2008)CrossRefGoogle Scholar
  36. 36.
    McKenna, M.: Worst-case optimal hidden-surface removal. ACM Trans. Graph. 6, 19–28 (1987)CrossRefGoogle Scholar
  37. 37.
    Mulmuley, K.: An efficient algorithm for hidden surface removal. Siggraph Comput. Graph. 23, 379–388 (1989)CrossRefGoogle Scholar
  38. 38.
    Overmars, M.H., Sharir, M.: An improved technique for output-sensitive hidden surface removal. Algorithmica 11, 469–484 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Preparata, F., Vitter, J., Yvinec, M.: Output-sensitive generation of the perspective view of isothetic parallelepipeds. Algorithmica 8, 257–283 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Rajasekaran, S., Reif, J.H.: Handbook of Parallel Computing: Models, Algorithms and Applications. Chapman & Hall/CRC, Boca Raton (2008)zbMATHGoogle Scholar
  41. 41.
    Reif, J.H.: Depth-first search is inherently sequential. Information Processing Letters 20(5), 229–234 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Reif, J.H., Sen, S.: An efficient output-sensitive hidden surface removal algorithm and its parallelization. In: Proc. 4th Annual Symposium on Computational Geometry, SCG 1988, pp. 193–200. ACM Press, New York (1988)Google Scholar
  43. 43.
    Reif, J.H., Sen, S.: An efficient output-sensitive hidden-surface removal algorithm for polyhedral terrains. Mathematical and Computer Modelling 21(5), 89–104 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Shannon, G.E.: A linear-processor algorithm for depth-first search in planar graphs. Inf. Process. Lett. 29, 119–123 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Sharir, M., Overmars, M.H.: A simple output-sensitive algorithm for hidden surface removal. ACM Trans. Graph. 11, 1–11 (1992)CrossRefzbMATHGoogle Scholar
  46. 46.
    Sodan, A.C., Machina, J., Deshmeh, A., Macnaughton, K., Esbaugh, B.: Parallelism via multithreaded and multicore CPUs. Computer 43, 24–32 (2010)CrossRefGoogle Scholar
  47. 47.
    Sutherland, I.E., Sproull, R.F., Schumacker, R.A.: A characterization of ten hidden-surface algorithms. ACM Comput. Surv. 6(1), 1–55 (1974)CrossRefzbMATHGoogle Scholar
  48. 48.
    Vishkin, U.: A PRAM-on-chip vision (invited abstract). In: Proc. 7th International Symposium on String Processing Information Retrieval (Spire 2000), p. 260. IEEE Computer Society Press, Washington, DC, USA (2000)CrossRefGoogle Scholar
  49. 49.
    Vishkin, U.: Using simple abstraction to reinvent computing for parallelism. Commun. ACM 54, 75–85 (2011)CrossRefGoogle Scholar
  50. 50.
    Weiss, R.A.: Be Vision, a package of IBM 7090 FORTRAN programs to draw orthographic views of combinations of plane and quadric surfaces. J. ACM 13, 194–204 (1966)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • F. Dévai
    • 1
  1. 1.London South Bank UniversityLondonUK

Personalised recommendations