Power Diagrams and Intersection Detection

  • Michal Zemek
  • Ivana Kolingerová
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


We propose a new algorithm for the detection of all intersections between a set of balls and a general query object. The proposed algorithm does not impose any restrictive condition on the set of balls and utilises power diagrams to minimize the amount of intersection tests. The price for this is power diagram computation in a preprocessing step.


Power diagrams intersection detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P., Guibas, L., Nguyen, A., Russel, D., Zhang, L.: Collision detection for deforming necklaces. Comput. Geom. Theory Appl. 28, 137–163 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA 2001: Proceedings of the sixth ACM symposium on Solid modeling and applications, pp. 249–266. ACM Press, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM Journal on Computing 16(1), 78–96 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aurenhammer, F.: Improved algorithms for discs and balls using power diagrams. Journal of Algorithms 9(2), 151–161 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  6. 6.
    Bajaj, C.L., Pascucci, V., Shamir, A., Holt, R.J., Netravali, A.N.: Dynamic maintenance and visualization of molecular surfaces. Discrete Appl. Math. 127(1), 23–51 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boissonnat, J.D., Karavelas, M.I.: On the combinatorial complexity of euclidean voronoi cells and convex hulls of d-dimensional spheres. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 305–312. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  8. 8.
    Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24(2), 162–166 (1981)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Internat. J. Found. Comput. Sci. 13, 106–114 (2001)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Edelsbrunner, H., Facello, M., Fu, P., Liang, J.: Measuring proteins and voids in proteins. In: Proceedings of the 28th Hawaii International Conference on System Sciences, HICSS 1995, p. 256. IEEE Computer Society, Washington, DC, USA (1995)Google Scholar
  11. 11.
    Edelsbrunner, H.: The union of balls and its dual shape. In: Proceedings of the ninth annual symposium on Computational geometry, SCG 1993, pp. 218–231. ACM, New York (1993)CrossRefGoogle Scholar
  12. 12.
    Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Tech. rep. Champaign, IL, USA (1995)Google Scholar
  13. 13.
    Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. In: SCG 1992: Proceedings of the eighth annual symposium on Computational geometry, pp. 43–52. ACM Press, New York (1992)CrossRefGoogle Scholar
  14. 14.
    Gavrilova, M.L.: On a nearest-neighbor problem in minkowski and power metrics. In: Alexandrov, V., Dongarra, J., Juliano, B., Renner, R., Tan, C. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp. 663–672. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Guibas, L.J., Xie, F., Zhang, L.: Kinetic collision detection: Algorithms and experiments. In: ICRA 2001, pp. 2903–2910 (2001)Google Scholar
  16. 16.
    Kim, D.S., Cho, Y., Kim, D.: Euclidean voronoi diagram of 3d balls and its computation via tracing edges. Comput. Aided Des. 37, 1412–1424 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Li, L.G., Zhang, L.: Euclidean proximity and power diagrams. In: In Proc. 10th Canadian Conference on Computational Geometry, pp. 90–91 (1998)Google Scholar
  18. 18.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and applications of Voronoi diagrams, 2nd edn. Probability and Statistics, 671 pages. Wiley, NYC (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Slonim, D.K.: Algorithms for modeling and measuring proteins. Tech. rep., Cambridge, MA, USA (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michal Zemek
    • 1
  • Ivana Kolingerová
    • 1
  1. 1.Faculty of Applied SciencesUniversity of West BohemiaPilsenCzech Republic

Personalised recommendations