Advertisement

Mapping the Anthropic Backfill of the Historical Center of Rome (Italy) by Using Intrinsic Random Functions of Order k (IRF-k)

  • Giancarlo Ciotoli
  • Francesco Stigliano
  • Fabrizio Marconi
  • Massimiliano Moscatelli
  • Marco Mancini
  • Gian Paolo Cavinato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

The historical centre of Rome is characterized by the presence of high thickness of anthropic cover with scarce geotechnical characteristics. This anthropic backfill could induce damages in urban areas, i.e. mainly differential settlements and seismic amplifications. About 1400 measurements from boreholes stored in the UrbiSIT database have been used to re-construct the anthropic backfill bottom surface by geostatistical techniques. The Intrinsic Random Functions of order k (IRF-k) was employed and compared with other interpolation methods (i.e. ordinary kriging and kriging with external drift) to determine the best spatial predictor. Furthermore, IRF-k allows to estimate by using an external drift as secondary information. The advantage of this method is that the modeling of the optimal generalized covariance is performed by using an automatic procedure avoiding the time-consuming modeling of the variogram. Furthermore, IRF-k allows the modeling of non stationary variables.

Keywords

backfill mapping geostatistics IRF-k Rome (Italy) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenbaum, M.S., Mc Millan, A.A., Powell, J.H., Culshaw, M.G., Northmore, K.J.: Classification of artificial (man-made) ground. Engineering Geology 69, 399–409 (2003)CrossRefGoogle Scholar
  2. 2.
    Makedon, T., Chatzigogos, N.P., Spandos, S.: Engineering geological parameters affecting the response of Thessaloniki’s urban fill to a major seismic event. Engineering Geology 104, 167–180 (2009)CrossRefGoogle Scholar
  3. 3.
    Katz, O., Crouvi, O.: The geotechnical effects of long human habitation (2000<years): Earthquake induced landslide hazard in the city of Zefat, northern Israel. Engineering Geology 95, 57–78 (2007)CrossRefGoogle Scholar
  4. 4.
    Danese, M., Lazzari, M., Murgante, B.: Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy). In: Gervasi, O., et al. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 415–429. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bouldreault, J.P., Dubé, J.S., Chouteau, M., Winiarski, T., Hardy, E.: Geophysical characterisation of contamineted urban fills. Engineering Geology 116, 196–206 (2010)CrossRefGoogle Scholar
  6. 6.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, New York (1978)Google Scholar
  7. 7.
    Jones, T.J., Hamilton, D.E., Johnson, C.R.: Contouring Geologic Surfaces with the Computer, p. 314. Van Nostrand Reinhold, New York (1986)Google Scholar
  8. 8.
    de Ks , Beurs., A, Stein., Hartkamp, A.D., White, J.W.: Interpolation techniques for climate variables. In: NRG-GIS Series, pp. 91–99. CIMMYT, Mexico (1999b)Google Scholar
  9. 9.
    Matheron, G.: Principles of geostatistics. Economic Geology 58, 1246–1266 (1963)CrossRefGoogle Scholar
  10. 10.
    Webster, R., Oliver, M.A.: Geostatistics from Environmental Scientist, p. 271. Wiley & Sons, Chichester (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Goovaerts, P.: Geostatistics for Natural Resources Evaluation, p. 483. Oxford press, Oxford (1997)Google Scholar
  12. 12.
    Goovaerts, P.: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228, 113–129 (2000)CrossRefGoogle Scholar
  13. 13.
    Weber, D.D., Englund, E.J.: Evaluation and comparison of spatial interpolators II. Mathematical Geology 26, 589–603 (1994)CrossRefGoogle Scholar
  14. 14.
    Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, P.: An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology 31, 375–390 (1999)CrossRefGoogle Scholar
  15. 15.
    Tobler, W.R.: A Computer Movie: Simulation of Population Change in the Detroit Region. Economic Geography 46, 234–240 (1970)CrossRefGoogle Scholar
  16. 16.
    Burrough, P.A., McDonnell, R.: A Principals of Geographical Information Systems. Oxford University Press, Oxford (1998)Google Scholar
  17. 17.
    Deutsch, C.V.: Geostatistical Reservoir Modeling. Oxford University Press, Oxford (2002)Google Scholar
  18. 18.
    Cressie, N.: The origins of kriging. Mathematical Geology 22, 239–252 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wackernagel: Multivariate Geostatistics: An Introduction with Applications. Springer,GmbH & Co., Berlin,Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Isaaks, E.J., Srivastava, R.M.: An introduction to Applied Geostatistics, p. 561. Oxford University Press, Oxford (1989)Google Scholar
  21. 21.
    Davis, B.M.: Uses and abuses of cross-validation in geostatistics. Mathematical Geology 19, 241–248 (1987)CrossRefGoogle Scholar
  22. 22.
    Myers, D.E.: To be or not to be.stationary? That is the question. Mathematical Geology 21, 347–362 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giancarlo Ciotoli
    • 1
  • Francesco Stigliano
    • 1
  • Fabrizio Marconi
    • 1
  • Massimiliano Moscatelli
    • 1
  • Marco Mancini
    • 1
  • Gian Paolo Cavinato
    • 1
  1. 1.Consiglio Nazionale delle Ricerche - Istituto di Geologia Ambientale e GeoingegneriaMonterotondo Stazione, RomeItaly

Personalised recommendations