A High Resolution Land Use/Cover Modelling Framework for Europe: Introducing the EU-ClueScanner100 Model

  • Carlo Lavalle
  • Claudia Baranzelli
  • Filipe Batista e Silva
  • Sarah Mubareka
  • Carla Rocha Gomes
  • Eric Koomen
  • Maarten Hilferink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)


In this paper we introduce the new configuration of the EU-ClueScanner model (EUCS100) that is designed for evaluating the impact of policy alternatives on the European territory at the high spatial resolution of 100 meters. The high resolution in combination with the vast extent of the model called for considerable reprogramming to optimize processing speed. In addition, the calibration of the model was revised to account for the fact that different spatial processes may be prominent at this more detailed resolution. This new configuration of EU-ClueScanner also differs from its predecessors in that it has increased functionalities which allow the modeller more flexibility. It is now possible to work with irregular regions of interest, composed of any configuration of NUTS 2 regions. The structure of the land allocation model allows it to act as a bridge for different sector and indicator models and has the capacity to connect Global and European scale to the local level of environmental impacts. The EUCS100 model is at the core of a European Land Use Modelling Platform that aims to produce policy-relevant information related to land use/cover dynamics.


Land use/cover Modelling Europe Land demand Factor data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, P.M., Torrens, P.: Knowledge and complexity (introduction). Futures 37, 581–584 (2005)CrossRefGoogle Scholar
  2. 2.
    Bakker, M., Verburg, P.: SENSOR Project Deliverable Report D 2.2.2/3; Deliverable title: Scenario based forecasts of land use and land management at 1 km2 grid and NUTS-X level, based on CLUE-S. In: Helming, K., Wiggering, H. (eds.) SENSOR Report Series 2008/09, ZALF, German (2009)Google Scholar
  3. 3.
    Batty, M., Torrens, P.: Modelling and prediction in a complex world. Futures 37, 745–766 (2005)CrossRefGoogle Scholar
  4. 4.
    Britz, W.: Automated model linkages: the example of CAPRI, vol. 57(8), pp. 367–368. Agrarwirtschaft, Jahrgang (2008)Google Scholar
  5. 5.
    Britz, W., Witzke, H.P. (eds.): CAPRI Model Documentation 2008: Version 2. Institute for Food and Resource Economics, University of Bonn (2008)Google Scholar
  6. 6.
    Brown, D.G., et al.: Path Dependence and the validation of agent-based spatial models of land-use. Int. J. Geo. Inf. Sci. 19:2, 153–174 (2005)CrossRefGoogle Scholar
  7. 7.
    COM 276 - Communication from the Commission on impact assessment (2002)Google Scholar
  8. 8.
    Dalvi, M.Q., Martin, K.M.: The Measurement of Accessibility: some preliminary results. Transportation 5, 17–42 (1976)CrossRefGoogle Scholar
  9. 9.
    De Groot, R.S., et al.: Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity 7(3), 260–272 (2010)CrossRefGoogle Scholar
  10. 10.
    De Groot, R.S., Wilson, M.A., Boumans, R.M.J.: A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41(3), 393–408 (2002)CrossRefGoogle Scholar
  11. 11.
    Dendoncker, N., Rounsevell, M., Bogaert, P.: Spatial Analysis and Modelling of Land Use Distributions in Belgium. Com. Env. Urb. Sys. 31, 188–205 (2007)CrossRefGoogle Scholar
  12. 12.
    EEA (European Environmental Agency): Land-use scenarios for Europe: qualitative and quantitative analysis on a European scale, Copenhagen: European Environmental Agency. EEA Technical report no. 9/2007 (2007)Google Scholar
  13. 13.
    EEA (European Environmental Agency): Modelling environmental change in Europe: towards a model inventory (SEIS/Forward), Copenhagen: European Environmental Agency. EEA Technical report no. 11/2008 (2008)Google Scholar
  14. 14.
    Eickhout, B., Prins, A.G.: Eururalis 2.0. Technical background and indicator documentation. Wageningen University and Research and Netherlands Environmental Assessment Agency (MNP), The Netherlands (2008)Google Scholar
  15. 15.
    El-Geneidy, A.M., Levinson, D.M.: Access to Destinations: Development of Accessibility Measures. Final Report for Minnesota Department of Transportation. In: Networks, Economics, and Urban Systems Research Group/Department of Civil Engineering, University of Minnesota, St. Paul (2006)Google Scholar
  16. 16.
    Engelen, G., et al.: The MOLAND modelling framework for urban and regional land-use dynamics. In: Koomen, E., et al. (eds.) Modelling Land-Use Change, Progress and applications, pp. 297–319. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Geurs, K.T., Ritsema van Eck, J.R.: Accessibility Measures: Review and Applications – Evaluation of Accessibility Impacts of Land-use Transport Scenarios, and Related Social and Economic Impacts. Report for RIVM – National Institute of Public Health and the Environment (2001)Google Scholar
  18. 18.
    Geurs, K.T., van Bee, B.: Accessibility Evaluation of Land-use and Transport Strategies: Review and Research Directions. J. Tra. Geo. 12, 127–140 (2004)CrossRefGoogle Scholar
  19. 19.
    Hansen, H.S.: Empirically Derived Neighbourhood Rules for Urban Land-Use Modelling. Environment and Planning B: Planning and Design advance online publication (2010)Google Scholar
  20. 20.
    Hansen, H.S.: Quantifying and Analysing Neighbourhood Characteristics Supporting Urban Land-Use Modelling. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds.) Lecture Notes in Geoinformation and Cartography, The European Information Society, pp. 283–299. Springer, Heidelburg (2008)Google Scholar
  21. 21.
    Helming, J.F.M., Janssen, S., van Meijl, H.: mpact assessment of post 2013 CAP measures on European agriculture. LEI report, The Hague (2010)Google Scholar
  22. 22.
    Helming, K., et al.: Ex-ante impact assessment of land use change in European regions—the SENSOR approach. In: Helming, K., Perez-Soba, M., Tabbush, P. (eds.) Sustainability Impact Assessment of Land Use Changes, pp. 77–105. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Hilferink, M., Rietveld, P.: Land Use Scanner: An integrated GIS based model for long term projections of land use in urban and rural areas. Journal of Geographical Systems 1(2), 155–177 (1999)CrossRefGoogle Scholar
  24. 24.
    Hoymann, J., Hoymann, J.: Accelerating urban sprawl in depopulating regions: a scenario analysis for the Elbe River Basin. Reg.Environ.Change (in press)Google Scholar
  25. 25.
    Hoymann, J.: Spatial allocation of future residential land use in the Elbe River Basin. Environment and Planning B: Planning and Design 37(5), 911–928 (2010)CrossRefGoogle Scholar
  26. 26.
    Koomen, E., Borsboom-van Beurden, J.: Land-use modeling in planning practice; the Land Use Scanner approach. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Lavalle, C., et al.: The MOLAND model for urban and regional growth forecast - A tool for the definition of sustainable development paths, European Commission, vol. 21480, p. 22. DG-Joint Research Centre, Ispra, Italy (2004)Google Scholar
  28. 28.
    Lavalle, C., Ehrlich, D., Annoni, A.: Sustainable urban development: the MURBANDY project of the Centre for Earth Observation. In: IEEE International Geoscience and remote sensing symposium proceedings (IGARSS1998), vol. 5, pp. 2571–2573 (1998)Google Scholar
  29. 29.
    Overmars, K.P., Verburg, P.H., Veldkamp, T.A.: Comparison of a Deductive and an Inductive Approach to Specify Land Suitability in a Spatially Explicit Land Use Model. Land Use Policy 24, 584–599 (2007)CrossRefGoogle Scholar
  30. 30.
    Pérez-Soba, M., Verburg, P.H., Koomen, E., Hilferink, M., Benito, P., Lesschen, J.P., Banse, M., Woltjer, G., Eickhout, B., Prins, A.G., Staritsky, I.: Land use modelling - implementation; Preserving and enhancing the environmental benefits of land-use services. Final report to the European Commission, DG Environment. Alterra Wageningen UR/ Geodan Next/ Object Vision/ BIOS/ LEI and PBL, Wageningen (2010) Google Scholar
  31. 31.
    Pijanowski, B.C., Brown, D.G., Shellito, B.A., Manik, G.A.: Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Computers, Environment and Urban Systems, 26, 553–575 (2002) Google Scholar
  32. 32.
    Pijanowski, B.C., Shellito, B., Pithadia, S., Alexandridis, K.: Forecasting and assessing the impact of urban sprawl in coastal watersheds along eastern Lake Michigan. Lakes & Reservoirs: Research and Management 7, 271–285 (2002)Google Scholar
  33. 33.
    Pontius, J. R.G., et al.: Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science 42(1), 11–37 (2008)CrossRefGoogle Scholar
  34. 34.
    Pontius Jr, R.G., Huffaker, D., Denman, K.: Useful techniques for validation for spatially explicit land-change models. Ecological Modelling 179, 445–461 (2004)CrossRefGoogle Scholar
  35. 35.
    Pratt, A.: Social and economic drivers of land use change in the British space economy. Land Use Pol 114, 109–114 (2009)CrossRefGoogle Scholar
  36. 36.
    Rich, J., et al.: Report on Scenario, Traffic Forecast and Analysis of Traffic on the TEN-T, taking into Consideration the External Dimension of the Union – TRANS-TOOLS version 2; Model and Data Improvements. DG TREN, Copenhagen, Denmark (2009)Google Scholar
  37. 37.
    SEC1992 Impact Assessment Guidelines (2009)Google Scholar
  38. 38.
    Van Vliet, J.: Assessing the accuracy of changes in spatial explicit land use change models. In: 12th annual AGILE conference on Geographic Information Science (2009)Google Scholar
  39. 39.
    Veldkamp, A., Fresco, L.O.: CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol. Model 91 (1996)Google Scholar
  40. 40.
    Veldkamp, A., Lambin, E.F.: Editorial: Predicting land-use change. Agr. Eco. Env. 85(1-3), 1–6 (2001)CrossRefGoogle Scholar
  41. 41.
    Verburg, P.H., de Nijs, T.C.M., Ritsema van Eck, J., Visser, H., de Jong, K.: A Method to Analyse Neighbourhood Characteristics of Lan Use Patterns. Computers, Environment and Urban Systems 28, 667–690 (2004)CrossRefGoogle Scholar
  42. 42.
    Verburg, P.H., Eickhout, B., van Meijl, H.: A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Annals of Regional Science 42(1), 57–77 (2008)CrossRefGoogle Scholar
  43. 43.
    Verburg, P.H., Overmars, K.: Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology 24(9), 1167–1181 (2009)CrossRefGoogle Scholar
  44. 44.
    Verburg, P.H., Rounsevell, M.D.A., Veldkamp, A.: Scenario-based studies of future land use in Europe. Agriculture, Ecosystems & Environment 114(1), 1–6 (2006)CrossRefGoogle Scholar
  45. 45.
    Verburg, P.H., Shot, P.P., Dijst, M.J., Veldkamp, A.: Land Use Change Modelling: Current Practice and Research Priorities. Geo.J. 61, 309–324 (2004)Google Scholar
  46. 46.
    Verburg, P.H., Soepboer, W., Limpiada, R., Espaldon, M.V.O., Sharifa, M.A., Veldkamp, A.: Modelling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30, 391–405 (2002) CrossRefGoogle Scholar
  47. 47.
    Verburg, P.H., van de Steeg, J., Veldkamp, A., Willemen, L.: From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 90, 1327–1335 (2009)CrossRefGoogle Scholar
  48. 48.
    Verburg, P.H., van Eck, J.R.R., de Nijs, T.C.M., Dijst, M.J., Schot, P.: Determinants of land-use change patterns in the Netherlands. Environment and Planning B: Planning and Design 31(1), 125–150 (2004)CrossRefGoogle Scholar
  49. 49.
    Verburg, P.H., Veldkamp, A.: Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology 19, 77–98 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlo Lavalle
    • 1
  • Claudia Baranzelli
    • 1
  • Filipe Batista e Silva
    • 1
  • Sarah Mubareka
    • 1
  • Carla Rocha Gomes
    • 1
  • Eric Koomen
    • 2
  • Maarten Hilferink
    • 3
  1. 1.Institute for Environment and Sustainability, Land Management and Natural Hazards UnitEuropean Commission, Joint Research CentreIspraItaly
  2. 2.Faculty of Economics and Business AdministrationVU UniversityAmsterdamThe Netherlands
  3. 3.Object Vision BV p/a Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations