Skip to main content

A Concurrent Object-Oriented Approach to the Eigenproblem Treatment in Shared Memory Multicore Environments

  • Conference paper
Book cover Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6782))

Included in the following conference series:

  • 2141 Accesses

Abstract

This work presents an object-oriented approach to the concurrent computation of eigenvalues and eigenvectors in real symmetric and Hermitian matrices on present memory shared multicore systems. This can be considered the lower level step in a general framework for dealing with large size eigenproblems, where the matrices are factorized to a small enough size. The results show that the proposed parallelization achieves a good speedup in actual systems with up to four cores. Also, it is observed that the limiting performance factor is the number of threads rather than the size of the matrix. We also find that a reasonable upper limit for a “small” dense matrix to be treated in actual processors is in the interval 10000-30000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine, I.N.: Quantum Chemistry, 5th edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  2. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Fifth Edition. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  3. Mieghem, P.N.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  4. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  5. Castro, M.E., Niño, A., Muñoz-Caro, C.: Evaluation and Optimal Computation of Angular Momentum Matrix Elements: An Information Theory Approach. WSEAS Trans. on Inf. Sci. and Appl. 7:2, 263–272 (2010)

    Google Scholar 

  6. Golub, G.H., van der Vorst, H.A.: Eigenvalue Computation in the 20th Century. J. Comput. and Appl. Math. 123, 35–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jacobi, C.G.J.: Ueber ein Leichtes Verfahren, die in der Theorie der Säcularstörungen Vorkommenden GleichungenNnumerisch Auflösen. J. Reine Angew. Math. 30, 51–94 (1846)

    Article  MathSciNet  Google Scholar 

  8. Givens, W.: Numerical Computation of the Characteristic Values of a Real Symmetric Matrix. Oak Ridge Report Number ORNL 1574, physics (1954)

    Google Scholar 

  9. Householder, A.S.: Unitary Triangularization of a Nonsymmetric Matrix. J. ACM. 5, 339–342 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  11. Parlett, B.N.: The symmetric Eigenvalue Problem. In: SIAM, Philadelphia. Republication of the original work, Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  12. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  13. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes. In: The Art of Scientific Computing, Cambridge University Press, Cambridge (2007)

    Google Scholar 

  14. Ortega, J.M.: Mathematics for Digital Computers. In: Ralston, Wilf (eds.), vol. 2, p. 94. John Wiley & Sons, Chichester (1967)

    Google Scholar 

  15. Cuppen, J.J.M.: A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem. Numer. Math. 36, 177–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, M., Eisenstat, S.C.: A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem. SIAM J. Matrix Anal. Appl. 16, 172–191 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wilkinson, J.H., Reinsch, C.: Handbook for Automatic Computation. In: Linear Algebra, vol. 2, Springer, Heidelberg (1971)

    Chapter  Google Scholar 

  18. Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W.: LINPACK Users’ Guide; LINPACK (1979), http://www.netlib.org/lapack

  19. EISPACK Last access (December 2010), http://www.netlib.org/eispack/

  20. Anderson, E., et al.: LAPACK Users’ Guide. In: SIAM, July 22, 2010 (1999), http://www.netlib.org/lapack/

  21. Blackford, L.S., et al.: ScaLAPACK Users’ Guide, December, 2010. SIAM, Philadelphia (1997), http://www.netlib.org/scalapack/

    Book  MATH  Google Scholar 

  22. ARPACK Last access (December 2010), http://www.caam.rice.edu/software/ARPACK/

  23. Lehoucq, R.B., Sorensen, D.C.: Deflation Techniques for an Implicitly Restarted Arnoldi Iteration, SIAM. J. Matrix Anal. & Appl. 17, 789–821 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. PARPACK Last access (December 2010), http://www.caam.rice.edu/~kristyn/parpack_home.html

  25. SLEPc Last access (December 2010), http://www.grycap.upv.es/slepc/

  26. Castro, M.E., Díaz, J., Muñoz-Caro, C., Niño, A.: A Uniform Object-Oriented Solution to the Eigenvalue Problem for Real Symmetric and Hermitian Matrices. Comput. Phys. Comun. Comput. Phys. Comun. doi:10.1016/j.cpc.2010.11.022(in press)

    Google Scholar 

  27. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, San Francisco (2010)

    Google Scholar 

  28. Hwu, W., Keutzer, K., Mattson, T.G.: The Concurrency Challenge. IEEE Design and Test of Computers 25, 312–320 (2008)

    Article  Google Scholar 

  29. Sutter, H., Larus, J.: Software and the Concurrency Revolution. ACM Queue 3, 54–62 (2005)

    Article  Google Scholar 

  30. Sottile, M.J., Mattson, T.G., Rasmussen, C.E.: Introduction to Concurrency in Programming Languages. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  31. OpenMP, A.P.I.: Specification for Parallel Programming. Last access (December 2010), http://openmp.org

  32. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.: MPI: The Complete Reference, 2nd edn., vol. 2, The MPI-2 Extensions. The MIT Press, Redmond, Washington (1998)

    Google Scholar 

  33. Kedia, K.: Hybrid Programming with OpenMP and MPI, Technical Report 18.337J, Massachusetts Institute of Technology (2009)

    Google Scholar 

  34. Jacobsen, D.A., Thibaulty, J.C., Senocak, I.: An MPI-CUDA Implementation for Massively Parallel Incompressible Flow Computations on Multi-GPU Clusters. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, Florida (2010)

    Google Scholar 

  35. Jang, H., Park, A., Jung, K.: Neural Network Implementation using CUDA and OpenMP. In: Proc. of the 2008 Digital Image Computing: Techniques and Applications, Canberra, pp. 155–161 (2008)

    Google Scholar 

  36. Shukuzawa, O., Suzuki, T., Yokota, I.: Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc. Japan. Acad. Ser. A 72, 102–103 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bischof, C., Marques, M., Sun, X.: Parallel Bandreduction and Tridiagonalization. Proceedings. In: Proc. Sixth SIAM Conference on Parallel Processing for Scientific Computing, pp. 383–390. SIAM, Philadelphia (1993)

    Google Scholar 

  38. Smith, C., Hendrickson, B., Jessup, E.: A Parallel Algorithm for Householder Tridiagonalization. In: Proc. 5th SIAM Conf. Appl. Lin. Alg. Lin. Alg. SIAM, Philadelphia (1994)

    Google Scholar 

  39. Chang, H.Y., Utku, S., Salama, M., Rapp, D.: A Parallel Householder Tridiagonalization Stratagem Using Scattered Square Decomposition. Parallel Computing 6, 297–311 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Honecker, A., Schüle, J.: OpenMP Implementation of the Householder Reduction for Large Complex Hermitian Eigenvalue Problems. In: Bischof, C., et al. (eds.) Parallel Computing: Architectures, Algorithms and Applications. NIC Series, vol. 38, pp. 271–278. John von Neumann Institute for Computing (2007)

    Google Scholar 

  41. Polychronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: a Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans. on Computers 36, 1425–1439 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niño, A., Muñoz-Caro, C., Reyes, S. (2011). A Concurrent Object-Oriented Approach to the Eigenproblem Treatment in Shared Memory Multicore Environments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21928-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21928-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21927-6

  • Online ISBN: 978-3-642-21928-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics