A Discrete Flow Simulation Model for Urban Road Networks, with Application to Combined Car and Single-File Bicycle Traffic

  • Jelena Vasic
  • Heather J. Ruskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)


A model, discrete in terms of time, geometrical space and velocity, is defined for a mix of car and bicycle traffic. Although based on cellular automata (CA) and interchangeable with a CA model in some special cases, the spatial aspect of the model presented here includes some characteristics that set it apart from CA models, such as overlapping cells and extended stochasticity. These characteristics allow easy incorporation of a variety of network elements into a spatial network model. The behaviour model includes rules for movement along stretches of road, as well as rules of behaviour at decision and conflict points on the road. Agent based simulations are run for three simple scenarios and results of these simulations are presented.


cellular automata heterogeneous traffic flow bicycles urban roads simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlovic, R., Huisinga, T., Schadschneider, A., Schreckenberg, M.: Open boundaries in a cellular automaton model for traffic flow with metastable states. Physical Review E 66, 46113 (2002)CrossRefGoogle Scholar
  2. 2.
    Belbasi, S., Foulaadvand, M.E.: Simulation of traffic flow at a signalized intersection. Journal of Statistical Mechanics: Theory and Experiment 2008, P07021 (2008)Google Scholar
  3. 3.
    Biham, O., Middleton, A.A., Levine, D.: Self-organization and a dynamical transition in traffic-flow models. Physical Review A 46, R6124–R6127 (1992)CrossRefGoogle Scholar
  4. 4.
    Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing traffic lights in a cellular automaton model for city traffic. Physical Review E 64, 56132 (2001)CrossRefGoogle Scholar
  5. 5.
    Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods. Physical Review E 59, R1311–R1314 (1999)CrossRefGoogle Scholar
  6. 6.
    Deo, P., Ruskin, H.J.: Comparison of homogeneous and heterogeneous motorised traffic at signalised and two-way stop control single lane intersection. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 622–632. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Deo, P., Ruskin, H.J.: Simulation of heterogeneous motorised traffic at a signalised intersection. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 522–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Esser, J., Schreckenberg, M.: Microscopic simulation of urban traffic based on cellular automata. International Journal Of Modern Physics C 8, 1025–1036 (1997)CrossRefGoogle Scholar
  9. 9.
    Feng, Y., Liu, Y., Deo, P., Ruskin, H.J.: Heterogeneous traffic flow model for a two-lane roundabout and controlled intersection. International Journal of Modern Physics C: Computational Physics & Physical Computation 18, 107–117 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gundaliya, P.J., Mathew, T.V., Dhingra, S.L.: Heterogeneous traffic flow modelling for an arterial using grid based approach. Journal of Advanced Transportation 42, 467–491 (2008)CrossRefGoogle Scholar
  11. 11.
    Jiang, R., Jia, B., Wu, Q.S.: Stochastic multi-value cellular automata models for bicycle flow. Journal of Physics A - Mathematical and General 37, 2063 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, X.B., Jiang, R., Wu, Q.S.: Cellular automaton model simulating traffic flow at an uncontrolled t-shaped intersection. International Journal of Modern Physics B 18, 2703–2707 (2004)CrossRefGoogle Scholar
  13. 13.
    Li, X.G., Gao, Z.Y., Jia, B., Zhao, X.M.: Cellular automata model for unsignalized t-shaped intersection. International Journal of Modern Physics C: Computational Physics & Physical Computation 20, 501–512 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Li, X.G., Gao, Z.Y., Jia, B., Zhao, X.M.: Modeling the interaction between motorized vehicle and bicycle by using cellular automata model. International Journal of Modern Physics C: Computational Physics & Physical Computation 20, 209–222 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Physics Reports 419, 1–64 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mallikarjuna, C., Rao, K.R.: Cellular automata model for heterogeneous traffic. Journal of Advanced Transportation 43, 321–345 (2009)CrossRefGoogle Scholar
  17. 17.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)Google Scholar
  18. 18.
    Ruskin, H.J., Wang, R.L.: Modelling traffic flow at an urban unsignalised intersection. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2329, pp. 381–390. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Tonguz, O.K., Viriyasitavat, W., Bai, F.: Modeling urban traffic: A cellular automata approach. IEEE Communications Magazine 47, 142–150 (2009)CrossRefGoogle Scholar
  20. 20.
    Vasić, J., Ruskin, H.J.: Cellular automaton simulation of traffic including cars and bicycles. Physica A (submitted)Google Scholar
  21. 21.
    Wahle, J., Schreckenberg, M.: A multi-agent system for on-line simulations based on real-world traffic data. Hawaii International Conference on System Sciences 3, 3037 (2001)Google Scholar
  22. 22.
    Wang, R.L., Ruskin, H.J.: Modeling traffic flow at a single-lane urban roundabout. Computer Physics Communications 147, 570–576 (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, R.L., Ruskin, H.J.: Modelling traffic flow at a multilane intersection. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 577–586. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Wang, R.L., Ruskin, H.J.: Modelling traffic flow at multi-lane urban roundabouts. International Journal of Modern Physics C: Computational Physics & Physical Computation 17, 693–710 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jelena Vasic
    • 1
  • Heather J. Ruskin
    • 1
  1. 1.School of ComputingDublin City UniversityDublin 9Ireland

Personalised recommendations