Mobility Adaptive CSMA/CA MAC for Wireless Sensor Networks

  • Bilal Muhammad Khan
  • Falah H. Ali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)


In this paper we propose high throughput low collision, mobility adaptive and energy efficient medium access protocol (MAC) called Mobility Adaptive (MA-CSMA/CA) for wireless sensor networks. MA-CSMA/CA ensures that transmissions incur less collision, and allows nodes to undergo sleep mode whenever they are not transmitting or receiving. It uses contention based as well as contention free period efficiently together to minimise the number of collisions cause by the mobile node entering and leaving the clusters. It also allows nodes to determine when they can switch to sleep mode during operation. MA-CSMA/CA for mobile nodes provides fast association between the mobile node and the cluster coordinator. The performance of MA-CSMA/CA is evaluated through extensive simulation, analysis and compared with the existing IEEE 802.15.4 industrial standard. The results show that MA-CSMA/CA outperforms significantly the existing CSMA/CA protocol including throughput, latency and energy consumption.


Mobile CSMA/CA Mobile MAC WSN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, J.H., Hashimoto, H.: Controlling mobile robots in distributed intelligent sensor network. IEEE Trans. Ind. Electron 50(5), 890–902 (2001)CrossRefGoogle Scholar
  2. 2.
    Ray, S., Starobinski, D., Trachtenberg, A., Ungrangsi, R.: Robust location detection with sensor networks. IEEE Journal of selected areas in Communication 22(6), 1016–1025 (2004)CrossRefGoogle Scholar
  3. 3.
    IEEE 802 Working Group, Standard for part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPAN), ANSI/IEEE std. 802.15.4 (September 2006) Google Scholar
  4. 4.
    Misic, J., Fung, C.J., Misic, V.B.: On node population in a multilevel 802.15.4 sensor network. In: Proc. GLOBECOM, pp. 1–6 (November 2006)Google Scholar
  5. 5.
    Chlamtac, I., Lerner, A.: Fair algorithms for maximal link activation in multihop radio networks. IEEE Transactions on Communications 35(7), 739–746 (1987)CrossRefGoogle Scholar
  6. 6.
    Cidon, I., Sidi, M.: Distributed assignment algorithms for multihop packet radio networks. IEEE Transactions on Computers 38(10), 1236–1361 (1989)CrossRefGoogle Scholar
  7. 7.
    Ephremides, A., Truong, T.: Scheduling broadcasts in multihop radio networks. IEEE Transactions on Communications 38(4), 456–460 (1990)CrossRefGoogle Scholar
  8. 8.
    Kleirock, L., Tobagi, F.: Packet switching in radio channels, part 1: Carrier sense multiple-access models and their throughput delay Characteristics. IEEE Transactions on Communications 23(12), 1400–1416 (1975)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kleirock, L., Tobagi, F.: Packet switching in radio channels, part 2: Hidden-terminal problem in carrier sense multiple access and the busytone solution. IEEE Transactions on Communications 23(12), 1417–1433 (1975)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lam, S.: A carrier sense multiple access protocol for local networks. Computer Networks 4, 21–32 (1980)Google Scholar
  11. 11.
    Bao, L., Garcia-Luna-Aceves, J.J.: A new approach to channel access scheduling for Ad Hoc networks. In: Seventh Annual International Conference on Mobile Computing and Networking 2001, pp. 210–221 (2001)Google Scholar
  12. 12.
    Chlamtac, I., Farago, A.: Making transmission schedules immune to topology changes in multi-Hop packet radio networks. IEEE/ACM Transactions on Networking 2(1), 23–29 (1994)CrossRefGoogle Scholar
  13. 13.
    Ju, J., Li, V.: An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Transactions on Networking 6(3), 298–306 (1998)CrossRefGoogle Scholar
  14. 14.
    Ramanathan, S.: A unified framework and algorithm for channel assignment in wireless networks,Wireless Networks. Springer, Wireless Networks 5(2), 81–94 (1999)CrossRefGoogle Scholar
  15. 15.
    Raviraj, P., Sharif, H., Hempel, M., Ci, S.: MOBMAC- An Energy Efficient and Low latency MAC for Mobile Wireless Sensor Networks. IEEE Systems Communications 370–375 (August 14-17, 2005)Google Scholar
  16. 16.
    Choi, S.-C., Lee, J.-W., Kim, Y.: An Adaptive Mobility-Supporting MAC protocol for Mobile Sensor Networks. In: IEEE Vehicular Technology Conference, pp. 168–172 (2008)Google Scholar
  17. 17.
    Pham, H., Jha, S.: An adaptive mobility-aware MAC protocol for sensor networks (MS-MAC). In: Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), pp. 214–226 (2004)Google Scholar
  18. 18.
    Lin, P., Qiao, C., Wang, X.: Medium access control with a dynamic duty cycle for sensor networks. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), vol. 3, pp. 1534–1539 (2004)Google Scholar
  19. 19.
    Hameed, S.A., Shaaban, E.M., Faheem, H.M., Ghoniemy, M.S.: Mobility-Aware MAC protocol for Delay Sensitive Wireless Sensor Networks. In: IEEE Ultra Modern Telecommunications & Workshops, October 2009, pp. 1–8 (2009)Google Scholar
  20. 20.
    Bettstetter, C., Resta, G., Santi, P.: The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing 2(3), 257–269 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bilal Muhammad Khan
    • 1
  • Falah H. Ali
    • 1
  1. 1.Communication research group, School of Engineering and DesignUniversity of SussexUK

Personalised recommendations