Generation of Pseudorandom Binary Sequences with Controllable Cryptographic Parameters

  • Amparo Fúster-Sabater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)


In this paper, a procedure of decomposition of nonlinearly filtered sequences in primary characteristic sequences has been introduced. Such a procedure allows one to analyze structural properties of the filtered sequences e.g. period and linear complexity, which are essential features for their possible application in cryptography. As a consequence of the previous decomposition, a simple constructive method that enlarges the number of known filtered sequences with guaranteed cryptographic parameters has been developed. The procedure here introduced does not impose any constraint on the characteristics of the nonlinear filter.


stream cipher pseudorandom sequence nonlinear filter linear complexity period cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awad, W.: Bias in the Nonlinear Filter Generator Output Sequence. Information Technology Journal 7(3), 541–544 (2008)CrossRefGoogle Scholar
  2. 2.
    Bluetooth, Specifications of the Bluetooth system, Version 1.1,
  3. 3.
    Biggs, N.: Discrete Mathematics, 2nd edn. Oxford University Press, New York (2002)zbMATHGoogle Scholar
  4. 4.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Diehard Battery of Tests of Randomness (1995),
  6. 6.
    eSTREAM-The ECRYPT Stream Cipher Project (2007),
  7. 7.
    Fúster-Sabater, A., Caballero-Gil, P.: On the linear complexity of nonlinearly filtered PN-sequences. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 80–90. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Fúster-Sabater, A., Garcia, J.: An efficient algorithm to generate binary sequences for cryptographic purposes. Theoretical Computer Science 259, 679–688 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fúster-Sabater, A., Caballero-Gil, P.: Strategic Attack on the Shrinking Generator. Theoretical Computer Science 409(3), 530–536 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fúster-Sabater, A., Caballero-Gil, P.: Synthesis of Cryptographic Interleaved Sequences by Means of Linear Cellular Automata. Applied Mathematics Letters 22(10), 1518–1524 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fuster-Sabater, A., Delgado-Mohatar, O., Brankovic, L.: On the Linearity of Cryptographic Sequence Generators. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 586–596. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Golomb, S.: Shift-Register Sequences. Aegean Park Press, Laguna Hill California (1982)zbMATHGoogle Scholar
  13. 13.
    GSM, Global Systems for Mobile Communications,
  14. 14.
    Hu, Y., Xiao, G.: Generalized Self-Shrinking Generator. IEEE Trans. Inform. Theory 50, 714–719 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge, England (1986)zbMATHGoogle Scholar
  16. 16.
    Limniotis, K., Kolokotronis, N., Kalouptsidis, N.: Nonlinear Complexity of Binary Sequences and Connections with Lempel-Ziv Compression. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 168–179. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    NIST Test suite for random numbers,
  18. 18.
    Rivest, R.: The RC4 Encryption Algorithm. RSA Data Sec., Inc. (March 1998),
  19. 19.
    Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  20. 20.
    Rueppel, R.: Analysis and Design of Stream Ciphers. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  21. 21.
    Simmons, G.: Contemporary Cryptology, The Science of Information, pp. 65–134. IEEE Press, Los Alamitos (1992)zbMATHGoogle Scholar
  22. 22.
    Tan, S.K., Guan, S.: Evolving cellular automata to generate nonlinear sequences with desirable properties. Applied Soft Computing 7(3), 1131–1134 (2007)CrossRefGoogle Scholar
  23. 23.
    Teo, S.G., Simpson, L., Dawson, E.: Bias in the Nonlinear Filter Generator Output Sequence. International Journal of Cryptology Research 2(1), 27–37 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amparo Fúster-Sabater
    • 1
  1. 1.Institute of Applied Physics, C.S.I.C.MadridSpain

Personalised recommendations