Advertisement

Penalty Functions for Genetic Programming Algorithms

  • José L. Montaña
  • César L. Alonso
  • Cruz Enrique Borges
  • Javier de la Dehesa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

Very often symbolic regression, as addressed in Genetic Programming (GP), is equivalent to approximate interpolation. This means that, in general, GP algorithms try to fit the sample as better as possible but no notion of generalization error is considered. As a consequence, overfitting, code-bloat and noisy data are problems which are not satisfactorily solved under this approach. Motivated by this situation we review the problem of Symbolic Regression under the perspective of Machine Learning, a well founded mathematical toolbox for predictive learning. We perform empirical comparisons between classical statistical methods (AIC and BIC) and methods based on Vapnik-Chrevonenkis (VC) theory for regression problems under genetic training. Empirical comparisons of the different methods suggest practical advantages of VC-based model selection. We conclude that VC theory provides methodological framework for complexity control in Genetic Programming even when its technical results seems not be directly applicable. As main practical advantage, precise penalty functions founded on the notion of generalization error are proposed for evolving GP-trees.

Keywords

Genetic Programming Symbolic Regression Inductive Learning Regression Model selection genetic programming symbolic regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akaike, H.: Statistical prediction information. Ann. Inst. Statistic. Math. 22, 203–217 (1970)CrossRefzbMATHGoogle Scholar
  2. 2.
    Amil, N.M., Bredeche, N., Gagné, C., Gelly, S., Schoenauer, M., Teytaud, O.: A statistical learning perspective of genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 327–338. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bernardo, J., Smith, A.: Bayesian theory. John Wiley & Sons, Chichester (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cherkassky, V., Yunkian, M.: Comparison of Model Selection for Regression. Neural Computation 15, 1691–1714 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  6. 6.
    Montaña, J.L.: Vcd bounds for some gp genotypes. In: ECAI, pp. 167–171 (2008)Google Scholar
  7. 7.
    Montaña, J.L., Alonso, C.L., Borges, C.E., Crespo, J.L.: Adaptation, performance and vapnik-chervonenkis dimension of straight line programs. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 315–326. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Shao, X., Cherkassky, V., Li, W.: Measuring the VC-dimension using optimized experimental design. Neural Computation 12, 1969–1986 (2000)CrossRefGoogle Scholar
  9. 9.
    Teytaud, O., Gelly, S., Bredeche, N., Schoenauer, M.: Statistical Learning Theory Approach of Bloat. In: Proceedings of the 2005 conference on Genetic and Evolutionary Computation, pp. 1784–1785 (2005)Google Scholar
  10. 10.
    Vapnik, V.: Statistical learning theory. John Wiley & Sons, Chichester (1998)zbMATHGoogle Scholar
  11. 11.
    Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, 264–280 (1971)CrossRefzbMATHGoogle Scholar
  12. 12.
    Vapnik, V., Chervonenkis, A.: Ordered risk minimization. Automation and Remote Control 34, 1226–1235 (1974)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Vapnik, V., Levin, E., Cun, Y.: Measuring the VC-dimension of a learning machine. Neural Computation 6, 851–876 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José L. Montaña
    • 1
  • César L. Alonso
    • 2
  • Cruz Enrique Borges
    • 1
  • Javier de la Dehesa
    • 1
  1. 1.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain
  2. 2.Centro de Inteligencia ArtificialUniversidad de OviedoGijónSpain

Personalised recommendations