Advertisement

Linking SLEUTH Urban Growth Modeling to Multi Criteria Evaluation for a Dynamic Allocation of Sites to Landfill

  • Abdolrassoul Salman Mahiny
  • Mehdi Gholamalifard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

Taking timely measures for management of the natural resources requires knowledge of the dynamic environment and land use practices in the rapidly changing post- industrial world. We used the SLUETH urban growth modeling and a multi-criteria evaluation (MCE) technique to predict and allocate land available to landfill as affected by the dynamics of the urban growth. The city is Gorgan, the capital of the Golestan Province of Iran. Landsat TM and ETM+ data were used to derive past changes that had occurred in the city extent. Then we employed slope, exclusion zones, urban areas, transportation network and hillshade layer of the study area in the SLEUTH modeling method to predict town sprawl up to the year 2050. We applied weighted linear combination technique of the MCE to define areas suitable for landfill. Linking the results from the two modeling methods yielded necessary information on the available land and the corresponding location for landfill given two different scenarios of town expansion up to the year 2050. These included two scenarios for city expansion and three scenarios for waste disposal. The study proved the applicability of the modeling methods and the feasibility of linking their results. Also, we showed the usefulness of the approach to decision makers in proactively taking measures in managing the likely environment change and possibly directing it towards more sustainable outcomes. This also provided a basis for dynamic land use allocation with regards to the past, present and likely future changes.

Keywords

SLEUTH MCE Landfill Land Use Planning Gorgan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acevedo, W., Foresman, T.W., Buchanan, J.T.: Origins and Philosophy of Building a Temporal Database to Examine Human Transformation Processes. In: Proceedings, ASPRS/ACSM Annual Convention and Exhibition, Baltimore, MD, vol. I, pp. 148–161 (1996)Google Scholar
  2. 2.
    Clarke, K., Gaydos, L.: Loose-coupling a Cellular Automaton Model and GIS: Long Term Urban Growth Prediction for San Francisco and Washington/ Baltimore. Int. J. Geo. Inform. Sci. 12(7), 699–714 (1998)CrossRefGoogle Scholar
  3. 3.
    Batty, M., Xie, Y.: Possible Urban Automata. Environ. Plan., B 24, 175–192 (1997)CrossRefGoogle Scholar
  4. 4.
    Dietzel, C., Clarke, K.: The Effect of Disaggregating Land Use Categories in Cellular Automata During Model Calibration and Forecasting. Computers, Environ. Urban Sys. 30, 78–101 (2006)CrossRefGoogle Scholar
  5. 5.
    Leao, S., Bishop, I., Evans, D.: Spatial- Temporal Model for Demand and Allocation of Waste Landfills in Growing Urban Region. Computers, Environ. Urban Sys. 28, 353–385 (2004)CrossRefGoogle Scholar
  6. 6.
    Tchobanoglous, G., Theisen, H., Vigil, S.A.: Integrated Solid Waste Management: Engineering Principles and Management Issues. McGrow-Hill, New York (1993)Google Scholar
  7. 7.
    Lane, W.N., McDonald, R.R.: Land suitability analysis: landfill siting. J. Urban Plan. Develop. 109(1), 50–61 (1983)CrossRefGoogle Scholar
  8. 8.
    Chang, N.B., Wang, S.F.: A Locational Model for the Site Selection of Solid Waste Management Facilities with Traffic Congestion Constraints. J. Civil Eng. Sys. 11, 287–306 (1993)CrossRefGoogle Scholar
  9. 9.
    Lober, D.J.: Resolving the Siting Impasse: Modelling Social and Environmental Locational Criteria with a Geographic Information System. J. Am. Plan. Assoc. 61(4), 482–495 (1995)CrossRefGoogle Scholar
  10. 10.
    Siddiqui, M.Z., Everett, J.W., Vieux, B.E.: Landfill Siting Using Geographic Information Systems: a Demonstration. J. Environ. Eng. 122(6), 515–523 (1996)CrossRefGoogle Scholar
  11. 11.
    Kao, J.J., Lin, H.Y., Chen, W.Y.: Network Geographic Information System for Landfill Siting. Waste Manag. Res. 15, 239–253 (1997)CrossRefGoogle Scholar
  12. 12.
    Leao, S., Bishop, I., Evans, D.: Assessing the Demand of Solid Waste Disposal in Urban Region by Urban Dynamics Modeling in a GIS Environment. Resources, Conserv. Recyc. 33, 289–313 (2001)CrossRefGoogle Scholar
  13. 13.
    Leao, S., Bishop, I., Evans, D.: Spatial-Temporal Model for Demand and Allocation of Waste Landfills in Growing Urban Region. Computers, Environ. Urban Sys. 28, 353–385 (2004)CrossRefGoogle Scholar
  14. 14.
    Canter, L.W.: Environmental Impact Assessment for Hazardous Waste Landfills. J. Urban Plan. Develop. 117(2), 59–76 (1991)CrossRefGoogle Scholar
  15. 15.
    Koo, J.K., Shin, H.S., Yoo, H.C.: Multi-objective Siting Planning for a Regional Hazardous Waste Treatment Centre. Waste Manag. Res. 9, 205–218 (1991)CrossRefGoogle Scholar
  16. 16.
    Hokkanen, J., Salminen, P.: Locating a Waste Treatment Facility by Multi-Criteria Analysis. J. M. Crit. Ana. 6, 175–184 (1997)zbMATHGoogle Scholar
  17. 17.
    Eastman, R.J.: Idrisi 32, Release 2, p. 237. Clark University, USA (2001)Google Scholar
  18. 18.
    Mahiny, A.S.: Purifying training site in supervised classification of remote sensing data: A case study in Gorgan City and its environs. The Environment. J. of the Environ. Res. Ins. 1(5), 25–32 (2010)Google Scholar
  19. 19.
    Dietzel, C., Clarke, K.C.: Toward Optimal Calibration of the SLEUTH Land Use Change Model. Transactions in GIS 11(1), 29–45 (2007)CrossRefGoogle Scholar
  20. 20.
    Mahiny, A.S.: A Modeling Approach to Cumulative Effects Assessment for Rehabilitation of RemnantVegetation, PhD Thesis, SRES, ANU, Australia (2003)Google Scholar
  21. 21.
    Eastman, J.R., Jiang, H.: Fuzzy Measures in Multi- Criteria Evaluation. In: Proceedings, 2nd. International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Studies, Fort Collins, Colorado, May 21-23, pp. 527–534 (1996)Google Scholar
  22. 22.
    Hopkins, L.D.: Methods for Generating Land Suitability Maps: a Comparative Evaluation. J. Am. Inst. Plan. 43(4), 386–400 (1977)CrossRefGoogle Scholar
  23. 23.
    Saaty, T.L.: A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psycho. 15, 234–281 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mahini, A.S., Gholamalifard, A.: Siting MSW landfills with a weighted linear combination methodology in a GIS environment. Int. J. of Environ. Sci.& Tech. 3(4), 435–445 (2006)CrossRefGoogle Scholar
  25. 25.
    Batty, M., Densham, P.J.: Decision support, GIS, and Urban Planning (1996), http://www.geog.ucl.ac.uk/~pdensham/SDSS/s_t_paper.html
  26. 26.
    Rubenstein-Montano, B., Zandi, I.: An Evaluative Tool for Solid Waste Management. J. Urban Plan. Develop. 126(3), 119–135 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Abdolrassoul Salman Mahiny
    • 1
  • Mehdi Gholamalifard
    • 2
  1. 1.Gorgan University of Agricultural Sciences and Natural ResourcesBeheshtiIran
  2. 2.Environmental SciencesTarbiat Modares UniversityNoorIran

Personalised recommendations