Advertisement

Conceptual Approach to Measure the Potential of Urban Heat Islands from Landuse Datasets and Landuse Projections

  • Christian Daneke
  • Benjamin Bechtel
  • Jürgen Böhner
  • Thomas Langkamp
  • Jürgen Oßenbrügge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

Urban morphology plays a crucial role in the alteration of the local climate, resulting in the formation of Urban Heat Islands. Regarding the steady growth of cities and the impact of global climate change, the risk of overheating is expected to increase. In order to reduce this risk and the resulting health problems, planning measures are needed to adapt to these severe events. Planners however need tools to quantify and evaluate different adaption strategies to judge its effectiveness. This paper presents conceptual thoughts towards the development of such a planning tool, as well as proposing a method to derive potential areas of intra Urban Heat Islands. A first calibration of the landscape metric for city of Hamburg region is presented, which showcases the method.

Keywords

Landscape Metrics Urban Heat Island Land Use Modeling Hamburg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poumadère, M., Mays, C., Le Mer, S., Blong, S.: The 2003 heat wave in France: dangerous climate change here and now. Risk Analysis 25, 1483–1494 (2005)CrossRefGoogle Scholar
  2. 2.
    Haines, A., Kovats, R., Campbell-Lendrum, D., Corvalan, C.: Climate change and human health: impacts, vulnerability and public health. Public Health 120, 585–596 (2006)CrossRefGoogle Scholar
  3. 3.
    Rosenzweig, C., Solecki, W., Parshall, L., Chooping, M., Pope, G., Goldberg, R.: Characterizing the urban heat island in current and future climates in New Jersey. Env. Hazards 6, 51–62 (2005)CrossRefGoogle Scholar
  4. 4.
    Stewart, I.D., Oke, T.R.: Newly developed thermal climate zones for defining and measuring urban heat island magnitude in the canopy layer. In: Preprints, T. R. OkeSymp. & 8th Symp. onUrb. Env. Phoenix, January 11-15 (2009)Google Scholar
  5. 5.
    Oke, T.R.: Boundary Layer Climates, 2nd edn. p. 435 (1987)Google Scholar
  6. 6.
    Oßenbrügge, J., Bechtel, B.: Klimawandel und Stadt: Der Faktor Klima als neue Determinante der Stadtentwicklung. Hamburger Symposium Geographie, Band 2 (2010)Google Scholar
  7. 7.
    Oke, T.R.: City size and the urban heat island. Atmosphere and Environment 7, 769–779 (1973)CrossRefGoogle Scholar
  8. 8.
    Davenport, A.G., Grimmond, C.S.B., Oke, T.R., Wieringa, J.: Estimating the roughness of cities and sheltered country. In: Preprint for the 12th AMS Conf. Appl.Clim. Asheville, N.C, pp. 96–99 (2000)Google Scholar
  9. 9.
    Wieringa, J., Davenport, A.G., Grimmond, C.S.B., Oke, T.R.: New revision of Davenport roughness classification. In: Proc. of the 3rd European & African Conf. on Wind Eng. vol. 8, Eindhoven, Netherlands (July 2001)Google Scholar
  10. 10.
    Weng, Q., Lu, D., Schubring, J.: Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89, 467–483 (2004)CrossRefGoogle Scholar
  11. 11.
    Yow, D.M.: Urban Heat Islands: Observations, Impacts, and Adaptation. Geography Compass 1(6), 1227–1251 (2007)CrossRefGoogle Scholar
  12. 12.
    Saaroni, H., Ben-Dor, E., Bitan, A., Potchter, O.: Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape Urban Plan 48, 1–18 (2000)CrossRefGoogle Scholar
  13. 13.
    Hart, M.A., Sailor, D.J.: Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor.Appl.Climatol. 95, 397–406 (2009)CrossRefGoogle Scholar
  14. 14.
    Yokobori, T., Ohta, S.: Effect of land cover on air temperatures involved in the development of an intra-urban heat island. Climate Research 39, 61–73 (2009)CrossRefGoogle Scholar
  15. 15.
    Buttstädt, M., Sachsen, T., Ketzler, G., Merbitz, H., Schneider, C.: Urban Temperature Distribution and Detection of Influencing Factors in Urban Structure. In: International Seminar on Urban Form, Hamburg (2010)Google Scholar
  16. 16.
    Bechtel, B.: Floristic mapping data as a new proxy for the mean urban heat island and comparison of predictors in Hamburg. Submitted to Climate Research (2011) (in review)Google Scholar
  17. 17.
    Spronken-Smith, R.A., Oke, T.R., Lowry, W.P.: Advection and the surface energy balance across an irrigated urban park. International Journal of Climatology 20, 1033–1047 (2000)CrossRefGoogle Scholar
  18. 18.
    Kikegawa, Y., Genchi, Y., Kondo, H., Hanaki, K.: Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Applied Energy 83, 649–668 (2006)CrossRefGoogle Scholar
  19. 19.
    Randall, T.A., Churchill, C.J., Baetz, B.W.: A GIS-based decision support system for neighbourhood greening. Environment and Planning B: Planning and Design 30, 541–563 (2003)CrossRefGoogle Scholar
  20. 20.
    Auer, A.H.: Correlation of land use and cover with meteorological anomalies. J. Appl. Meteorol. 17, 636–643 (1978)CrossRefGoogle Scholar
  21. 21.
    Baumüller, J., Reuter, U., Hoffmann, U., Esswein, H.: Klimaatlas Region Stuttgart. Schriftenr. In: Schriftenr. Verb. Reg. 26th edn. Verband Region Stuttgart, Stuttgart (2008)Google Scholar
  22. 22.
    Langkamp, T., Daneke, C., Bechtel, B.: Alteration of Urban Climate by Urban Morphology taking Wind and Temperature as examples. In: International Seminar on Urban Form, Hamburg (2010)Google Scholar
  23. 23.
    Daneke, C., Bechtel, B.: Classification scheme of urban structures based on climatic characteristics, designed for land use modeling applications. In: Daneke, C., Bechtel, B. (eds.) International Seminar on Urban Form, Hamburg (2010)Google Scholar
  24. 24.
    Batty, M., Yichun, X., Zhanli, S.: Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems 23, 205–233 (1999)CrossRefGoogle Scholar
  25. 25.
    Hurkens, J., Hahn, B.M., Van Delden, H.: Using the GEONAMICA® software environment for integrated dynamic spatial modelling. In: Sànchez-Marrè, M., Béjar, J., Comas, J., Rizzoli, A., Guariso, G. (eds.) Proceedings of the iEMSs Fourth Biennial Meeting: Integrating Sciences and Information Technology for Environmental Assessment and Decision Making. International Environmental Modelling and Software Society, Barcelona, Spain (2008)Google Scholar
  26. 26.
    Klepper, O.: Stapeling van Milieuthema’s in termen van kans op voorkomen (ECO-notitie 97-01). In: RIVM, The Netherlands, pp. 97–91. Bilthoven (1997)Google Scholar
  27. 27.
    RIKS:Metronamica - Model descriptions. RIKS, Maastricht, the Netherlands (2009)Google Scholar
  28. 28.
    Schlünzen, K.H., Hoffmann, P., Rosenhagen, G., Riecke, W.: Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatology 30(8), 1121–1136 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Daneke
    • 1
  • Benjamin Bechtel
    • 1
  • Jürgen Böhner
    • 1
  • Thomas Langkamp
    • 1
  • Jürgen Oßenbrügge
    • 1
  1. 1.Institut für GeographieUniversität HamburgHamburgGermany

Personalised recommendations