GIS and Remote Sensing to Study Urban-Rural Transformation During a Fifty-Year Period

  • Carmelo Riccardo Fichera
  • Giuseppe Modica
  • Maurizio Pollino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)


A relevant issue in Remote Sensing (RS) and GIS is related to the analysis and the characterization of Land Use Land Cover (LULC) changes, very useful for a wide range of environmental applications and to efficiently undertake landscape planning and management policies. The methodology described has been applied to a case-study conducted in the area of the Province of Avellino (Southern Italy). Firstly, aerial photos and Landsat imagery have been classified to produce LULC maps for a fifty-year period (1954÷2004). Then, through a GIS approach, change detection and spatiotemporal analysis has been integrated to characterize LULC dynamics, focusing on the urban-rural gradient. This study has shown that LULC patterns and their changes are linked to both natural and social processes whose driving role has been clearly demonstrated: after the disastrous Irpinia earthquake (1980), local specific zoning laws and urban plans have significantly addressed landscape changes.


GIS Remote Sensing Satellite imagery classification Land Use Land Cover (LULC) changes Urban sprawl Urban/Rural fringe areas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michalak, W.Z.: GIS in land use change analysis: integration of remotely sensed data into GIS. Appl. Geogr. 13, 28–44 (1993)CrossRefGoogle Scholar
  2. 2.
    Telesca, L., Coluzzi, R., Lasaponara, R.: Urban Pattern Morphology Time Variation in Southern Italy by Using Landsat Imagery. In: Murgante, B., Borruso, G., Lapucci, A. (eds.) Geocomputation & Urban Planning. SCI, vol. 176, pp. 209–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Masek, J.G., Lindsay, F.E., Goward, S.N.: Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. Int. J. Remote Sens. 21, 3473–3486 (2000)CrossRefGoogle Scholar
  4. 4.
    Yang, X., Lo, C.P.: Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 23, 1775–1798 (2002)CrossRefGoogle Scholar
  5. 5.
    Yuan, F., Sawaya, K.E., Loeffelholz, B.C., Bauer, M.E.: Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Envir. 98(2&3), 317–328 (2005)CrossRefGoogle Scholar
  6. 6.
    Sudhira, H.S., Ramachandra, T.V., Jagdish, K.S.: Urban sprawl: metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. 5, 29–39 (2004)CrossRefGoogle Scholar
  7. 7.
    Wilson, E.H., Hurd, J.D., Civco, D.L., Prisloe, S., Arnold, C.: Development of a geospatial model to quantify, describe and map urban growth. Remote Sensing of Environment 86(3), 275–285 (2003)CrossRefGoogle Scholar
  8. 8.
    Antrop, M.: Changing patterns in the urbanized countryside of Western Europe. Landscape Ecolo 15(3), 257–270 (2000)CrossRefGoogle Scholar
  9. 9.
    Antrop, M.: Landscape change and the urbanization process in Europe. Landscape Urban Plan 67, 9–26 (2004)CrossRefGoogle Scholar
  10. 10.
    EEA (European Environment Agency): Urban sprawl in Europe: The ignored challenge. EEA Report No. 10/2006, Copenhagen, Denmark (2006)Google Scholar
  11. 11.
    Antrop, M.: Why landscapes of the past are important for the future. Landscape Urban Plan 70, 21–34 (2005)CrossRefGoogle Scholar
  12. 12.
    Lucas, R., Rowlands, A., Brown, A., Keyworth, S., Bunting, P.: Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. 62, 165–185 (2007)CrossRefGoogle Scholar
  13. 13.
    Song, C., Woodcock, C.E., Seto, K., Lenney, M.P., Macomber, S.: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sens. Environ. 75, 230–244 (2001)CrossRefGoogle Scholar
  14. 14.
    Lillesand, T., Kiefer, R., Chipman, J.: Remote sensing and image interpretation. Wiley, New York (2003)Google Scholar
  15. 15.
    Congalton, R.G.: A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37(1), 35–46 (1991)CrossRefGoogle Scholar
  16. 16.
    Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRCPress Taylor & Francis Group, Boca Raton (2009)Google Scholar
  17. 17.
    Fichera, C.R., Modica, G., Pollino, M.: Characterizing land cover change using multi-temporal remote sensed imagery and landscape metrics. In: Las Casas, G., Pontrandolfi, P., Murgante, B. (eds.) Informatica e Pianificazione Urbana e Territoriale - Atti della Sesta Conferenza Nazionale INPUT 2010, Potenza (2010)Google Scholar
  18. 18.
    Lo, C.P., Shipman, R.L.: A GIS approach to land-use change dynamics detection. Photogramm. Eng. Rem. S. 56, 1483–1491 (1990)Google Scholar
  19. 19.
    Petit, C.C., Lambin, E.F.: Integration of multi-source remote sensing data for land cover change detection. Int. J. Geogr. Inf. Sci. 15(8), 785–803 (2001)CrossRefGoogle Scholar
  20. 20.
    Singh, A.: Digital Change Detection Techniques using Remotely Sensed Data. Int. J. Remote Sens. 10, 989–1003 (1989)CrossRefGoogle Scholar
  21. 21.
    Lu, D., Mausel, P., Brondízio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25(12), 2365–2401 (2004)CrossRefGoogle Scholar
  22. 22.
    Jensen, J.R., Ramsat, E.W., Mackey, H.E., Christensen, E.J., Sharitz, R.P.: Inland wetland change detection using aircraft MSS data. Photogramm. Eng. Rem. S. 53, 521–529 (1987)Google Scholar
  23. 23.
    Dimyati, M., Mizuno, K., Kobayashi, S., Kitamura, T.: An analysis of land use/cover change using the combination of MSS Landsat and land use map-a case study in Yogyakarta, Indonesia. Int. J. Remote Sens. 17, 931–944 (1996)CrossRefGoogle Scholar
  24. 24.
    Taylor, J.C., Brewer, T.R., Bird, A.C.: Monitoring landscape change in the national parks of England and Wales using aerial photo interpretation and GIS. Int. J. Remote Sens. 21, 2737–2752 (2000)CrossRefGoogle Scholar
  25. 25.
    Fichera, C.R., Modica, G., Pollino, M.: Remote sensing and GIS for rural/urban gradient detection. In: XVIIth World Congress of the International Commission of Agricultural Engineering (CIGR), Québec City, Canada (2010)Google Scholar
  26. 26.
    Congalton, R.G., Macleod, R.D.: Change detection accuracy assessment on the NOAA Chesapeake Bay Pilot Study. In: International Symposium on the Spatial Accuracy of Natural Resources Data Bases, pp. 78–87. ASPRS, Williamsburg (1994)Google Scholar
  27. 27.
    Huang, B., Zhang, L., Wu, B.: Spatiotemporal analysis of rural-urban land conversion. Int. J. Geogr. Inf. Sci. 23(3), 379–398 (2009)CrossRefGoogle Scholar
  28. 28.
    Mayer, C.J., Somerville, C.T.: Land use regulation and new construction. Reg. Sci. Urban Econ. 30, 639–662 (2000)CrossRefGoogle Scholar
  29. 29.
    Verburg, P.H., Koning, G.H.J., Kok, K., Veldkamp, A., Priess, J.: The CLUE modelling framework: an integrated model for the analysis of land use change. In: Singh, R.B., Jefferson, F., Himiyama, Y. (eds.) Land Use and Cover Change, Science Publishers, Enfield (2001)Google Scholar
  30. 30.
    Bhatta, B.: Analysis of Urban Growth and Sprawl from Remote Sensing Data. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Fotheringham, S., Rogerson, P.: Spatial analysis and GIS. Taylor & Francis, London (1994)Google Scholar
  32. 32.
    Italian National Institute of Statistics,
  33. 33.
    Murgante, B., Las Casas, G., Sansone, A.: A spatial rough set for locating the periurban fringe. In: Batton-Hubert, M., Joliveau, T., Lardon, S. (eds.) SAGEO 2007, Rencontres internationales Géomatique et territoire (2007)Google Scholar
  34. 34.
    Forman, R.T.T.: Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press, Cambridge (1995)Google Scholar
  35. 35.
    Vizzari, M.: Spatial modelling of potential landscape quality. Appl. Geogr. 31(1), 108–118 (2011)CrossRefGoogle Scholar
  36. 36.
    Bhatta, B.: Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. Int. J. Remote Sens. 30(18), 4733–4746 (2009)CrossRefGoogle Scholar
  37. 37.
    Roca, J., Burnsa, M.C., Carreras, J.M.: Monitoring urban sprawl around Barcelona’s metropolitan area with the aid of satellite imagery. In: Proceedings of Geo-Imagery Bridging Continents, XXth ISPRS Congress, Istanbul, Turkey, July 12–23 (2004)Google Scholar
  38. 38.
    Almeida, C.M., Monteiro, A.M.V., Mara, G., Soares-Filho, B.S., Cerquera, G.C., Pennachin, C.S.L., Batty, M.: GIS and remote sensing as tools for the simulation of urban land-use change. Int. J. Remote Sens. 26, 759–774 (2005)CrossRefGoogle Scholar
  39. 39.
    Harvey, R.O., Clark, W.A.V.: The nature and economics of urban sprawl. Land Economics 41(1), 1–9 (1965)CrossRefGoogle Scholar
  40. 40.
    Hahs, A., Mcdonnell, M.: Selecting independent measures to quantify Melbourne’s urban–rural gradient. Landscape Urban Plan 78(4), 435–448 (2006)CrossRefGoogle Scholar
  41. 41.
    Saizen, I., Mizuno, K., Kobayashi, S.: Effects of land-use master plans in the metropolitan fringe of Japan. Landscape Urban Plan 78, 411–421 (2006)CrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Guindon, B.: Using satellite remote sensing to survey transport-related urban sustainability: Part 1: Methodologies for indicator quantification. Int. J. Appl. Earth Obs. 8(3), 149–164 (2006)CrossRefGoogle Scholar
  43. 43.
    Hardin, P.J., Jackson, M.W., Otterstrom, S.M.: Mapping, Measuring, and Modeling Urban Growth. In: Jensen, R.R., Gatrell, J.D., McLean, D. (eds.) Geo-Spatial Technologies in Urban Environments, Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carmelo Riccardo Fichera
    • 1
  • Giuseppe Modica
    • 1
  • Maurizio Pollino
    • 1
    • 2
  1. 1.Department of Agroforestry and Environmental Sciences and Technologies (DiSTAfA)Mediterranea’ University of Reggio CalabriaReggio CalabriaItaly
  2. 2.“Earth Observations and Analyses” Lab (UTMEA-TER) Casaccia Research CentreENEA - National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRomeItaly

Personalised recommendations